Размерность жесткости пружины. Формула жесткости пружины. Параллельное соединение системы пружин

УПРУГОСТЬ, МОДУЛЬ УПРУГОСТИ, ЗАКОН ГУКА. Упругость – свойство тела деформироваться под действием нагрузки и восстанавливать первоначальную форму и размеры после ее снятия. Проявление упругости лучше всего проследить, проведя простой опыт с пружинными весами – динамометром, схема которого показана на рис.1.

При нагрузке в 1 кг стрелка-индикатор сместится на 1 деление, при 2 кг – на два деления, и так далее. Если нагрузки последовательно снимать, процесс идет в обратную сторону. Пружина динамометра – упругое тело, ее удлинение D l , во-первых, пропорционально нагрузке P и, во-вторых полностью исчезает при полном снятии нагрузки. Если построить график, отложить по вертикали оси величины нагрузки, а по горизонтальной – удлинение пружины, то получаются точки, лежащие на прямой, проходящей через начало координат, рис.2. Это справедливо как для точек, изображающих процесс нагружения так и для точек, соответствующих нагрузке.

Угол наклона прямой характеризует способность пружины сопротивляться действию нагрузки: ясно, что «слабая» пружина (рис.3). Эти графики называются характеристиками пружины.

Тангенс угла наклона характеристики называется жесткостью пружины С . Теперь можно записать уравнение деформирования пружины D l = P / C

Жесткость пружины С имеет размерность кг / см\up122 и зависит от материала пружины (например, сталь или бронза) и ее размеров – длины пружины, диаметра ее витка и толщины проволоки, из которой она сделана.

В той или иной мере все тела, которые можно считать твердыми, обладают свойством упругости, но заметить это обстоятельство можно далеко не всегда: упругие деформации обычно очень малы и наблюдать их без специальных приборов удается практически только при деформировании пластинок, струн, пружин, гибких стержней.

Прямым следствием упругих деформаций являются упругие колебания конструкций и природных объектов. Можно легко обнаружить дрожание стального моста, по которому идет поезд;иногда можно услышать, как звенит посуда, когда на улице проезжает тяжелый грузовик; все струнные музыкальные инструменты так или иначе преобразуют упругие колебания струн в колебания частичек воздуха;в ударных инструментах тоже упругие колебания (например, мембраны барабана) преобразуются в звук.

При землетрясении происходят упругие колебания поверхности земной коры; при сильном землетрясении кроме упругих деформаций возникают пластические (которые остаются после катаклизма как изменения микрорельефа), а иногда появляются трещины. Эти явления не относятся к упругости: можно сказать, что в процессе деформирования твердого тела сначала всегда появляются упругие деформации, потом пластические, и, наконец, образуются микротрещины. Упругие деформации очень малы – не больше 1%, а пластические могут достигнуть 5–10% и более, поэтому обычное представление о деформациях относится к пластическим деформациям – например, пластилин или медная проволока. Однако, несмотря на свою малость, упругие деформации играют важнейшую роль в технике: расчет на прочность авиалайнеров, подводных лодок, танкеров, мостов, туннелей, космических ракет – это, в первую очередь, научный анализ малых упругих деформаций, возникающих в перечисленных объектах под действием эксплуатационных нагрузок.

Еще в неолите наши предки изобрели первое дальнобойное оружие – лук и стрелы, используя упругость изогнутой ветки дерева; потом катапульты и баллисты, построенные для метания больших камней, использовали упругость канатов, свитых из растительных волокон или даже из женских длинных волос. Эти примеры доказывают, что проявление упругих свойств было давно известно и давно использовалось людьми. Но понимание того, что любое твердое тело под действием даже небольших нагрузок обязательно деформируется, хотя и на очень малую величину, впервые появилось в 1660 у Роберта Гука , современника и коллеги великого Ньютона . Гук был выдающимся ученым, инженером и архитектором. В 1676 он сформулировал свое открытие очень кратко, в виде латинского афоризма: «Ut tensio sic vis», смысл которого состоит в том, что «какова сила, таково и удлинение». Но опубликовал Гук не этот тезис, а только его анаграмму: «ceiiinosssttuu». (Таким образом тогда обеспечивали приоритет, не раскрывая сути открытия.)

Вероятно, в это время Гук уже понимал, что упругость – универсальное свойство твердых тел, но считал необходимым подтвердить свою уверенность экспериментально. В 1678 вышла книга Гука, посвященная упругости, где описывались опыты, из которых следует, что упругость есть свойство «металлов, дерева, каменных пород, кирпича, волос, рога, шелка, кости, мышцы, стекла и т.п.» Там же была расшифрована анаграмма. Исследования Роберта Гука привели не только к открытию фундаментального закона упругости, но и к изобретению пружинных хронометров (до того были только маятниковые). Изучая различные упругие тела (пружины, стержни, луки), Гук установил, что «коэффициент пропорциональности» (в частности, жесткость пружины) сильно зависит от формы и размеров упругого тела, хотя материал играет решающую роль.

Прошло более ста лет, в течение которых опыты с упругими материалами проводили Бойль, Кулон, Навье и некоторые другие, менее известные физики. Одним из основных опытов стало растяжение пробного стержня из изучаемого материала. Для сравнения результатов, полученных в разных лабораториях, нужно было либо использовать всегда одинаковые образцы, либо научиться исключать слияние размеров образца. И в 1807 появилась книга Томаса Юнга, в которой был введен модуль упругости – величина, описывающая свойство упругости материала независимо от формы и размеров образца, который использовался в опыте. Для этого нужно силу P , приложенную к образцу, разделить на площадь сечения F , а произошедшее при этом удлинение D l разделить на первоначальную длину образца l . Соответствующие отношения – это напряжение s и деформация e .

Теперь закон Гука о пропорциональности можно записать в виде:

s = Е e

Коэффициент пропорциональности Е называется модулем Юнга, имеет размерность, как у напряжения (МПа), а обозначение его есть первая буква латинского слова elasticitat – упругость.

Модуль упругости Е – это характеристика материала того же типа, как его плотность или теплопроводность.

В обычных условиях, чтобы продеформировать твердое тело, требуется значительная сила. Это означает, что модуль Е должен быть большой величиной – по сравнению с предельными напряжениями, после которых упругие деформации сменяются пластическими и форма тела заметно искажается.

Если измерять величину модуля Е в мегапаскалях (МПа), получатся такие средние значения:

Физическая природа упругости связана с электромагнитным взаимодействием (в том числе с силами Ван-дер-Ваальса в решетке кристалла). Можно считать, что упругие деформации связаны с изменением расстояния между атомами.

Упругий стержень имеет еще одно фундаментальное свойство – утоньшаться при растяжении. То, что канаты при растяжении становятся тоньше, было известно давно, но специально поставленные опыты показали, что при растяжении упругого стержня всегда имеет место закономерность: если измерить поперечную деформацию e ", т.е. уменьшение ширины стержня d b , деленное на первоначальную ширину b , т.е.

и разделить ее на продольную деформацию e , то это отношение остается постоянным при всех значениях растягивающей силы P , то есть

(Полагают, что e "< 0 ; поэтому используется абсолютная величина). Константа v называется коэффициентом Пуассона (по имени французского математика и механика Симона Дени Пуассона) и зависит только от материала стержня, но не зависит от его размеров и формы сечения. Величина коэффициента Пуассона для разных материалов изменяется от 0 (у пробки) до 0,5 (у резины). В последнем случае объем образца в процессе растяжения не изменяется (такие материалы называются несжимаемыми). Для металлов значения различны, но близки к 0,3.

Модуль упругости E и коэффициент Пуассона вместе образуют пару величин, которые полностью характеризуют упругие свойства любого конкретного материала (имеются в виду изотропные материалы, т.е. такие, у которых свойства не зависят от направления; пример древесины показывает, что это не всегда так – ее свойства вдоль волокон и поперек волокон сильно различаются. Это – анизотропный материал. Анизотропными материалами являются монокристаллы, многие композиционные материалы (композиты) типа стеклопластика. Такие материалы тоже в известных пределах обладают упругостью, но само явление оказывается значительно более сложным).

Если под воздействием внешних сил на твердое тело оно деформируется, то в нем происходят смещения частиц узлов кристаллической решетки. Этому сдвигу противостоят силы взаимодействия частиц. Так возникают силы упругости, которые приложены к телу, подвергшемуся деформации. Модуль силы упругости пропорционален деформации:

где — напряжение при упругой деформации, K — модуль упругости, который равен напряжению при относительной деформации, равной единице. где — относительная деформация, — абсолютная деформация, — первоначальное значение величины, которая характеризовала форму или размеры тела.

ОПРЕДЕЛЕНИЕ

Коэффициентом упругости называют физическую величину, которая связывает в законе Гука удлинение, возникающее при деформации упругого тела и силу упругости. Величина равная называется коэффициентом упругости. Она показывает изменение размера тела под воздействием нагрузки при упругой деформации.

Коэффициент упругости зависит от материала тела, его размеров. Так при увеличении длины пружины и уменьшении ее толщины коэффициент упругости уменьшается.

Модуль Юнга и коэффициент упругости

При продольной деформации, в одностороннем растяжении (сжатии) мерой деформации служит относительное удлинение, которое обозначают или . При этом модуль силы упругости определяют как:

где — модуль Юнга, который в рассматриваемом случае равен модулю упругости () и характеризующий упругие свойства тела; — первоначальная длина тела; — изменение длины при нагрузке . При S — площадь поперечного сечения образца.

Коэффициент упругости растянутой (сжатой) пружины

При растяжении (сжатии) пружины вдоль оси X закон Гука записывается как:

где — модуль проекции силы упругости; — коэффициент упругости пружины, — удлинение пружины. Тогда коэффициент упругости — это сила, которую следует приложить к пружине, чтобы изменить ее длину на единицу.

Единицы измерения

Основной единицей измерения коэффициента упругости в системе СИ является:

Примеры решения задач

ПРИМЕР 1

Задание Какова работа, совершается при сжатии пружины на величину ? Считать, что сила упругости пропорциональна сжатию, коэффициент упругости пружины равен k.
Решение В качестве основной формулы используем определение работы вида:

Сила по условию пропорциональна величине сжатия, что математически можно представить как:

Подставим выражения для силы (1.2) в формулу (1.1):

Ответ

ПРИМЕР 2

Задание Вагон массой двигался со скоростью . Он ударился о стенку. При ударе каждый буфер вагона сжался на l м. Буферов два. Каковы коэффициенты упругости пружин, если считать, что они равны?
Решение Сделаем рисунок.

Вы хорошо учили физику в школе? Знаете основные физические законы и смогли бы вот так просто взять и рассчитать, к примеру, жесткость пружины? Начнём с теоретических знаний. Жесткость пружины – это коэффициент, связывающий удлинение упругого тела и возникающую вследствие этого удлинения силу упругости. Жесткость пружины ещё называют коэффициентом упругости или коэффициентом Гука, так как относится жесткость пружины именно к закону Гука. Что же такое сила упругости, которая упоминается в данном законе? Сила упругости – это сила, которая возникает при деформации тела и противодействующая этой деформации.

Математический метод

Как определить жесткость пружины или же, по терминологии такой науки, как физика, коэффициент жесткости пружины? Для этого нужно знать простую формулу, по которой и высчитывается жесткость пружины. Эта формула, а точнее закон Гука, выглядит так: F=|kx|, где k – это коэффициент упругости пружины, x – это удлинение пружины или же, как её ещё называют, величина деформации пружины. А величина, обозначенная буквой F, соответственно, сила упругости, которую мы и высчитываем. Чтобы узнать, какова жесткость пружины необходимо измерить две другие величины, обозначенные в формуле, пользуясь стандартными математическими законами. Далее следует просто решить уравнение с одним неизвестным.

Опытный метод

Чтобы понять, как найти жесткость пружины, а точнее, определить коэффициент жесткости пружины опытным путем, следует произвести следующие манипуляции. Вам необходимо деформировать тело, прилагая к нему силу. Самый простой вид деформации – это сжатие или растяжение. Коэффициент жесткости показывает именно то, какую силу необходимо приложить к телу, чтобы упруго деформировать его на единицу длины. Мы сейчас говорим об упругой деформации, когда тело принимает свою первоначальную форму после совершения воздействия на него. Для того чтобы провести этот наглядный эксперимент вам потребуются следующие вещи:

  • калькулятор,
  • ручка,
  • тетрадь,
  • пружина,
  • линейка,
  • груз.

Итак, один конец пружины закрепите вертикально, а второй оставьте свободным. Измерьте длину пружины и запишите результат в тетрадь (это будет значение x1). Подвесьте к свободному концу пружины груз весом в сто граммов и опять измерьте длину пружины, запишите значение (x2). Рассчитайте абсолютное удлинение пружины (разница значений x1 и x2). При небольших сжатиях и растяжениях сила упругости пропорциональна деформации. Здесь уже применяем Закон Гука, согласно которому Fупр = |kx|, где k и является коэффициентом жесткости. Для того чтобы найти нужный нам коэффициент жесткости надо силу растяжения разделить на удлинение пружины. Силу растяжения находим следующим образом: Fупр = - N = -mg. Отсюда следует, что mg = kx. А значит, k = mg/x. Дальше все просто: подставьте известные вам значения в формулу и найдите, чему равна жёсткость пружины.

Расчет пружины. Рассмотрим, каким образом можно получить зависимость удлинения пружины от приложенной нагрузки. Считаем по теоретическим формулам сопротивления материалов. Блокнот Mathemetica прилагается.

Расчет пружины. Общие сведения

Для автоматизации многочисленных подстановок, буду применять Mathematica Online. Приведу сразу снимок блокнота. Теория далее. Задействованы ReplaceAll в краткой форме и Solve.

Блокнот Mathematica Online. Вывод формулы коэффициента жесткости пружины.

Cчитаем, что пружина это скручивающийся стержень. У кусочка проволоки, из которого навита пружина, есть некоторая длина (это будет длина стержня). Диаметр проволоки равен .

Пружина для расчета жесткости

Энергия деформации

Для энергии (Дж) деформации крутящегося стержня имеем следующее выражение:

Здесь: — объем стержня (проволоки пружины), — модуль сдвига (для стали равен Па), — максимальное касательное напряжение на поверхности стержня, — площадь поперечного сечения проволоки, из которой свита пружина, — длина проволоки, из которой свита пружина. Без зацепов и поджатых витков. Площадь поперечного сечения может быть выражена через диаметр проволоки:

Как известно, напряжения в стержне при кручении меняются от нуля в центре до максимума на поверхности стержня. То есть: — для касательных напряжений в произвольной точке стержня на расстоянии от оси вращения. Для максимальных касательных напряжений, радиус максимален и равен радиусу проволоки, поэтому: . Здесь — радиус точки в которой вычисляется напряжение (максимальный радиус равен ), — диаметр проволоки, — полярный момент инерции сечения проволоки. Для проволоки круглого сечения момент равен: . — момент кручения стержня, выражается через силу , которая приложена к пружине по оси спирали:

Таким образом, подставив все величины в формулу для определения энергии деформации, мы получим следующее выражение энергии (см. ячейку 15 блокнота Mathematica):

Работа силы на свободном конце пружины

С другой стороны, работа, совершаемая некоторой силой на перемещение нижнего конца пружины при растяжении должна быть равна энергии деформации. Известно, что усилие для растяжения пружины не постоянно, чем больше растягиваем, тем больше усилие. Закон линеен. Поэтому работа равна площади треугольника под графиком линейной функции, то есть:

Зависимость перемещения Y от силы F

Приравнивая работу (Дж) к энергии (Дж), получаем уравнение:

Забыл кое-что выразить. — длина проволоки в спирали может быть подсчитана так: , где — диаметр спирали, — число витков.

Сделаем замену в уравнении и выразим (Ячейка 18):

т.е. , где

(Н/м) — это искомый коэффициент жесткости цилиндрической пружины. Обратите внимание на то, что жесткость прямо пропорциональна диаметру проволоки в четвертой степени и обратно пропорциональна диаметру пружины в кубе. Это означает, что увеличение диаметра проволоки в два раза при прочих размерах без изменений, увеличит жесткость в раз. А увеличение диаметра пружины в два раза при прочих размерах без изменений, уменьшит жесткость в раз.

На практике, приходится учитывать некоторые нюансы. Например, диаметр проволоки может быть не любым а только таким, который выпускается промышленностью. У пружины, кроме жесткости есть такая характеристика, как ресурс и режим работы. Учитывается даже соударение витков — вспомните магическую пружинку Слинки, которую Эйс Вентура с монастыря спускал, так вот, у ней всегда витки соударяются. Кроме того, выведенная формула жесткости не учитывает криволинейность оси проволоки, свитой в пружину. Для этого существует специальный поправочный коэффициент, входящий в формулу для вычисления касательного напряжения. Этот коэффициент зависит от индекса пружины . Пружины на практике рассчитываются в соответствии с нормативной документацией:

Методика определения размеров пружин дана в ГОСТ 13765-86 — «Пружины винтовые цилиндрические сжатия и растяжения из стали круглого сечения. Обозначение параметров, методика определения размеров».

Расчет пружины выполняется по ГОСТ, см. В.И. Анурьев — «Справочник конструктора машиностроителя» Том 3, стр 199. Издание 2001 г.

Мы уже неоднократно пользовались динамометром – прибором для измерения сил. Познакомимся теперь с законом, позволяющим измерять силы динамометром и обуславливающим равномерность его шкалы.

Известно, что под действием сил возникает деформация тел – изменение их формы и/или размеров . Например, из пластилина или глины можно вылепить предмет, форма и размеры которого будут сохраняться и после того, когда мы уберём руки. Такую деформацию называют пластической. Однако, если наши руки деформируют пружину, то когда мы их уберём, возможны два варианта: пружина полностью восстановит форму и размеры или же пружина сохранит остаточную деформацию.

Если тело восстанавливает форму и/или размеры, которые были до деформации, то деформация упругая . Возникающая при этом в теле сила – это сила упругости, подчиняющаяся закону Гука :

Поскольку удлинение тела входит в закон Гука по модулю, этот закон будет справедлив не только при растяжении, но и при сжатии тел.

Опыты показывают: если удлинение тела мало по сравнению с его длиной, то деформация всегда упругая; если удлинение тела велико по сравнению с его длиной, то деформация, как правило, будет пластической или даже разрушающей . Однако, некоторые тела, например, резинки и пружины деформируются упруго даже при значительных изменениях их длины. На рисунке показано более чем двухкратное удлинение пружины динамометра.

Для выяснения физического смысла коэффициента жёсткости, выразим его из формулы закона. Получим отношение модуля силы упругости к модулю удлинения тела. Вспомним: любое отношение показывает, сколько единиц величины числителя приходится на единицу величины знаменателя. Поэтому коэффициент жёсткости показывает силу, возникающую в упруго деформированном теле при изменении его длины на 1 м.

  1. Динамометр является...
  2. Благодаря закону Гука в динамометре наблюдается...
  3. Явлением деформации тел называют...
  4. Пластически деформированным мы назовём тело, ...
  5. В зависимости от модуля и/или направления приложенной к пружине силы, ...
  6. Деформацию называют упругой и считают подчиняющейся закону Гука, ...
  7. Закон Гука носит скалярный характер, так как с его помощью можно определить только...
  8. Закон Гука справедлив не только при растяжении, но и при сжатии тел, ...
  9. Наблюдения и опыты по деформации различных тел показывают, что...
  10. Ещё со времени детских игр мы хорошо знаем, что...
  11. По сравнению с нулевым штрихом шкалы, то есть недеформированным начальным состоянием, справа...
  12. Чтобы понять физический смысл коэффициента жёсткости, ...
  13. В результате выражения величины «k» мы...
  14. Ещё из математики начальной школы мы знаем, что...
  15. Физический смысл коэффициента жёсткости состоит в том, что он...
koreada.ru - Про автомобили - Информационный портал