Мостовые унч. Балансный мостовой усилитель мощности (250 Вт). Выбор проектных процедур анализа

Принципиальная схема мощного мостового усилителя мощности ЗЧ на микросхеме TDA2005, выход 20 Ватт на нагрузке 4 Ома. Микросхема типа TDA2005 весьма устаревшая микросхема интегрального УНЧ. Но, тем не менее, именно благодаря устарелости, её зачастую можно приобрести по очень невысокой цене. К тому же, у многих она может быть в старых запасах.

По сравнению с современными ИМС УМЗЧ TDA2005 конечно проигрывает в сложности схемы, потому что требует значительного количества навесных деталей. Но по параметрам идет вполне себе «ноздря в ноздрю» и с более современными.

Однажды автору пришлось ремонтировать старенький музыкальный центр непонятного еще индийского производства. Задача была поставлена не столько восстановить работоспособность, сколько сделать из данного аппарата что-то вроде активной акустической системы для работы с персональным компьютером.

Собственный УНЧ был неисправен, и не было никакого желания заниматься его восстановлением, так как и «при жизни» в нем было мало чего выдающегося. Решено было заменить УНЧ на два модуля на микросхемах TDA2005, поскольку таковые уже давно лежали без дела. При этом, увеличить мощность, повысить качество звука.

Конечно, это повлекло за собой и изменения в источнике питания, - но это другая тема.

Принципиальная схема

Рис.1. Принципиальная схема мостового усилителя мощности ЗЧ на микросхеме TDA2005, 20 Ватт при нагрузке 4 Ома.

Схема одного из каналов УНЧ показана на рисунке 1. Второй канал точно такой же. УНЧ микросхемы включены мостом для получения большей мощности и лучшего качества воспроизведения НЧ.

По такой схеме, при напряжении питания 14V усилитель обладает следующими характеристиками:

  • Мощность при сопротивлении акустической системы 4 Ом - 20W.
  • При мощности 4 W на нагрузке 4 Ом КНИ не более - 0,2%.
  • Диапазон рабочих частот 20-20000 Гц.
  • Чувствительность входа 200 mV.
  • Рабочее напряжение питания в пределах от 8 до 18 V.
  • Ток потребления при максимальной мощности 3,5 А (одного канала).

Входной сигнал проступает через резистор регулятор громкости R1. На схеме он показан, но на печатной плате его нет, так как он есть на передней панели музыкального центра.

Резистор R2 в принципе можно не устанавливать, его задача в том чтобы уровнять стереоканалы по усилению если это необходимо. Кроме того, его можно заменить переменным для регулировки стереобаланса.

Цепь R3-C2 очень полезна, если данный усилитель будет работать с цифровым источником сигнала, например, с выходом звуковой карты персонального компьютера. Эта цепь представляет собой простейший пассивный фильтр ВЧ, который подавляет ВЧ помехи от работы цифро-аналогового преобразователя цифрового источника сигнала.

Вывод 3 микросхемы А1 - это блокировка. В данном случае он используется для плавного пуска микросхемы, чтобы не было броска тока при включении через акустическую систему. Цепь R5-C9 несколько задерживает подключение выхода УНЧ, после того как подается питание.

Как уже сказано, напряжение питания может быть от 8 до 18V. При этом, желательно чтобы все конденсаторы были на напряжение не ниже полтора от напряжения питания. В этой схеме все электролитические конденсаторы на 25V.

Печатная плата и монтаж

Монтаж выполнен на компактной печатной плате (рис.2). Рисунок печатных дорожек показан, как если смотреть на дорожки. Если предполагается делать плату фотоспособом или «лазерным утюгом», этот рисунок нужно будет сделать зеркальным (это можно сделать со скана в любом графическом редакторе).

Рис. 2. Печатная плата для схемы мостового усилителя мощности с микросхемой TDA2005.

Но, на мой взгляд, такую простую разводку можно нарисовать и вручную -перманентным маркером. Микросхеме для работы необходим радиатор. Даже временно включать без радиатора не рекомендую. Эту плату УНЧ можно использовать и по другому назначению, не только как ремонтный модуль, но и как автомобильный УНЧ.

Государственный комитет Российской Федерации по высшему образованию

Уральский государственный технический университет - УПИ

Кафедра РЭИС

ДИПЛОМНАЯ РАБОТА НА ТЕМУ:

МОСТОВОЙ УСИЛИТЕЛЬ МОЩНОСТИ ЗВУКОВОЙ ЧАСТОТЫ

Екатеринбург 2006

Введение

1. Цель работы

2. Техническое задание

3. Принцип работы схемы мостового УМЗЧ

4. Подготовка загрузочного файла

4.1 Составление описания модели схемы

4.2 Выбор проектных процедур анализа

4.2.1 Карта опций.

4.2.2 Карта установки шины печати.

4.2.3 Карта установки температуры.

4.2.4 Карта вычисления чувствительности на постоянном токе.

4.2.5 Расчет коэффициента передачи в режиме малого сигнала.

4.2.6 Расчет спектральной плотности внутреннего шума.

4.2.7 Переходный анализ.

4.2.8 Анализ Фурье-гармоник.

4.2.9 Анализ на переменном токе.

4.2.10 Печать результатов.

4.2.11 Метод Монте-Карло.

4.2.12 Карта подготовки данных для PROBE.

4.3 Составление загрузочного файла

5. Отладка модели схемы

6. Анализ результатов машинных расчетов

6.1 Влияние температурв на работу схемы

6.2 Спектральная плотность внутреннего шума

6.3 Переходная характеристика усилителя

6.4 Анализ Фурье-гармоник

6.5 Амплитудно-частотная характеристика

6.6 Анализ Монте-Карло

6.7 Определение чувствительности схемы

Заключение

Библиографический список

Приложение 1

Приложение 2

Введение

Усилитель мощности звуковой частоты (УМЗЧ) предназначен для передачи сигнала от источника возбуждения в нагрузку с одновременным усилением сигнала по мощности. УМЗЧ можно рассматривать и как генератор, в котором энергия источника питания преобразуется в энергию переменного сигнала под воздействием входного напряжения определенной амплитуды. Поэтому УМЗЧ также называют генераторами с внешним возбуждением.

УМЗЧ в общем случае характеризуются параметрами:

    Pвых – выходная мощность;

    К – коэффициент усиления;

    КПД – коэффициент полезного действия;

    DF – диапазон рабочих частот;

    АЧХ – амплитудно-частотная характеристика;

    N – уровень нелинейных искажений;

    Ш – уровень собственных шумов.

В данной работе исследуется мостовой УМЗЧ, характерными особенностями которого являются:

    максимальное использование напряжения источника питания;

    большая выходная мощность, относительно других простых УМЗЧ;

    высокая устойчивость схемы;

    широкая полоса воспроизводимых частот в режиме номинальной мощности;

    сравнительно низкий коэффициент гармоник.

1. Цель работы

Курсовая работа предоставляет студенту следующие основные возможности:

    научиться анализировать техническое задание (ТЗ) на проектирование радиоэлектронных схем (РЭС);

    получить навыки поиска научно-технической литературы и работы с ней, правильного составления и оформления технической документации;

    усвоить основные понятия и термины, относящиеся к автоматизированному проектированию РЭС;

    познакомиться с основными проектными процедурами анализа схемотехнического этапа проектирования РЭА;

    познакомиться с современным пакетом прикладных программ Pspice схемотехнического проектирования;

    научиться ставить и выполнять задачи схемотехнического проектирования;

    закрепить и углубить знания методов расчета РЭС и элементной базы РЭА.

2. Техническое задание

    Спроектировать мостовой УМЗЧ, используя данные из журнала Радио №1/1992

    Технические требования к УМЗЧ:

Номинальное входное напряжение 0.35 В

Номинальная (максимальная) выходная мощность при

сопротивлении нагрузки 4 Ом 16 (20) Вт

Номинальный диапазон частот 40…20000 Гц

Скорость нарастания выходного напряжения 25 В/мкс

Коэффициент гармоник при номинальной мощности на

    Принципиальная электрическая схема мостового УМЗЧ



Рис.1.Принципиальная электрическая схема мостового УМЗЧ.

3. Принцип работы схемы мостового УМЗЧ

УМЗЧ состоит из двух усилителей. Рассмотрим один из них выполненный на базе усилителя мощности. Транзистор VT1 работает в каскаде усиления напряжения, а остальные VT2-VT5 (все с малыми напряжениями насыщения Uнас) образуют составной эмиттерный повторитель усиления мощности, работающий в режиме АВ (ток покоя 20…30 мА).

ДиодыVD1 и VD2 улучшают термостабильность тока покоя. Транзистор VT3 обеспечивает необходимую раскачку транзистора VT5.С целью максимального использования напряжения источника питания в усилитель введены две цепи положительной обратной связи (ПОС) по напряжению. При положительной полуволне усиливаемого сигнала работает цепь R5R6C3,а при отрицательной R8R9C4.

Отличительная особенность такой обратной связи – введение ее в цепь коллекторов транзисторов VT2,VT3,что приводит к увеличению амплитуды сигнала на выходе усилителя до максимально возможной.

С целью уменьшения нелинейных искажений, обусловленных несимметричностью плечоконечного каскада и действием ПОС, усилитель охвачен общей отрицательной обратной связью (ООС) по напряжению через цепь R1 – R4C1.Параметры этой цепи подобраны таким образом, чтобы, с одной стороны, обеспечить стабильность режима работы усилителя по постоянному току (за счет действия гальванической обратной связи через резистор R4),а с другой – получить необходимый коэффициент усиления всего усилителя (R1,R4).Глубина ООС по переменному напряжению – около 28 дБ. Конденсаторы С2 и С4 обеспечивают необходимую устойчивость всего усилителя.

Поскольку описываемый базовый усилитель инвертирующий, то с целью упрощения схемы сигнал на второй усилитель поступает с выхода первого через делитель напряжения R10R11.

4. Подготовка загрузочного файла

4.1 Составление описания модели схемы

На данном этапе был изучен входной язык Pspace, команды выполнения проектных процедур, вспомогательные и сервисные средства, встроенные модели компонентов РЭС.

В исходной схеме проставляются узлы, которые являются основой описания схемы. Элементы схемы описываются с помощью, узлов к которым они подключены и номинальными значениями. Причем резисторы и конденсаторы описываются непосредственно, а для диодов и транзисторов необходимы их модели, которые находятся в электронных библиотеках.

4.2 Выбор проектных процедур анализа

4.2.1 Карта опций

OPTIONS ACCT NOECHO NOPAGE RELTOL =0.0001

ACCT - обеспечивает в выходном файле статические сведения о моделируемой схеме и информацию об использованных вычислительных ресурсах – процессорным временем для выполнения различных процедур анализа;

NOECHO – запрещает печатание входного файла в выходном;

NOPAGE – запрещает нумерацию страниц, печатание титульной строки и заголовка для каждого вида анализа в выходном файле;

RELTOL – устанавливает относительную погрешность напряжения и тока.

4 .2.2 Карта установки шины печати

WIDTH OUT=80

Число 80 устанавливает количество колонок в выходном файле.

4.2.3 Карта установки температуры

TEMP 27 –60 80

Эта карта необходима для того, чтобы все виды анализа выполнялись при трех разных температурах.

4.2.4 Карта для вычисления чувствительности на постоянном токе

SENS V(13,18),

При использовании этой карты вычисляются малосигнальные чувствительности выходных переменных к изменениям внутренних параметров на постоянном токе.

4.2.5 Расчет коэффициента передачи в режиме малого сигнала

TF V (13,18) VIN ,

где VIN генератор входного сигнала.

С помощью этой директивы рассчитываются малосигнальные коэффициент передачи по постоянному току, входное и выходное сопротивление усилителя.

4.2.6 Расчет спектральной плотности внутреннего шума

NOISE V(13,18) VIN

Поскольку резисторы и объемные сопротивления транзисторов являются источниками теплового шума. Кроме того, полупроводниковые приборы имеют дробовой шум и фликкер-шум.С помощью карты.NOISE на каждой частоте частотного анализа рассчитывается спектральная плотность внутреннего шумового напряжения, которая пересчитывается ко входу цепи и к ее выходу.

4.2.7 Переходный анализ

TRAN / OP 1U 3M

С помощью этой директивы осуществляется расчет отклика цепи на заданное входное воздействие. Ключ ОР необходим для вывода подробной информации о рабочей точке.

4.2.8 Анализ Фурье-гармоник

FOUR V (6) V (13,18)

Эта карта выполняет спектральный анализ Фурье.

FOUR V(6) – коэффициент гармоник на входе схемы;

Усилитель мощности низкой частоты класса Hi-Fi, выполненный по мостовой схеме с применением двух интегральным микросхем TDA7294. Позволяет получить на выходе до 170 Ватт мощност, отлично подойдет для сабвуфера.

Технические характеристики

  • Выходная мощность на нагрузке 8 Ом и питании ±25V - 150 W;
  • Выходная мощность на нагрузке 16 Ом и питании ±35V - 170 W.

Принципиальная схема

В усилителе предусмотрена защита выходного каскада от короткого замыкания, термозащита (переключение на пониженную мощность в случае перегрева, возникающего при больших нагрузках), защита от бросков напряжения, режим отключения (Standby), режим включения/отключения входного сигнала (Mute), а также защита от «щелчка» при включении/выключении. Все это уже реализовано в интегральных микросхемах TDA7294.

Рис. 1. Мостовая схема включения двух микросхем TDA7294 - мощный мостовой усилитель НЧ.

Детали и печатная плата

Рис. 2. Печатная плата для мостового варианта включения микросхем TDA7294.

Рис. 3. Расположение компонентов для мостового варианта включения микросхем TDA7294.

Для питания такого усилителя мощности необходим источник питания с трансформатором мощностью не менее 250-300 Ватт. В схеме выпрямителя желательно установить электролитические конденсаторы по 10000мкФ и более на каждое плечо.

Мостовая схема включения из даташита

Рис. 4. Мостовая схема включения двух микросхем TDA7294 (из даташита).

В мостовом режиме работы, сопротивление нагрузки должно быть не менее 8 Ом, иначе микросхемы сгорят от перегрузки по току!

Печатная плата

Универсальная печатная плата для двухканального и мостового вариантов усилителя мощности.

Мостовая схема включения УМЗЧ - это два одинаковых канала, в одном из которых вход сигнала подключен на землю, а вход обратной связи (ножка 2) подключен через резистор 22К к выходу второго канала.

Также 10-е ножки микросхем (Mute) и 9-е ножки (Stand-By) нужно подключить к схеме управления режимами, собранной на резисторах и конденсаторах (рисунок 6).

Рис. 5. Печатная плата для усилителя мощности на микросхемах TDA7294.

В платах есть небольшие отклонения (в лучшую сторону) от схемы из даташита:

  • На входах микросхем (ножка 3) установлены конденсаторы на 4мкФ, а не 0,56мкФ;
  • Между резистором 680 Ом (что идет к ножке 2) и землей подключен конденсатор 470мкФ;
  • Конденсаторы между ножками 6 и 14 - 470мкФ, а не 22мкФ;
  • По питанию вместо конденсаторов 0,22мкФ предложено установить 680нФ (0,68мкФ);

В мостовом включении выводы 10 и 9 соединяются вместе соответственно и подключаются к схеме управления режимами.

Рис. 6. Простая схема управления режимами Standby-Mute для микросхем TDA7294.

Чтобы включить микросхемы (вывести из тихого и энергосберегающего режимов), контакты "VM" и "VSTBY" достаточно подключить к положительному выводу питания +Vs.

Эта печатная плата является универсальной, ее можно использовать как для двухканального, так и для мостового режимов работы усилителя на микросхемах TDA7294. Здесь очень хорошо выполнена разводка земли (GND), что улучшит надежность и помехоустойчивость УМЗЧ.

Литература:

  1. Даташит на микросхему TDA7294 - Скачать (7-Zip архив, 1,2МБ).
  2. FAQ по TDA7294 - cxem.net/sound/amps/amp129.php

Собрать автомобильный сабвуфер своими руками дело довольно почетное, но часто бывают затруднения со сборкой усилителя мощности, который должен питать сабвуферную головку. Для довольно мощных головок штатной сети 12 Вольт мало, и нужно повысить напряжение преобразователем напряжения.

Без использования преобразователя высокой мощности добиться не реально, но что делать, если не имеется должного опыта постройки преобразователя, а собрать усилитель для саба очень хочется?

По законам физики, от сети 12 Вольт на нагрузку 4Ом нельзя получить мощность более 18 ватт — речь о чистой, синусоидальной выходной мощности, но исключения как всегда есть. Есть разновидность усилителей работающих в классе H, которые позволяют получить от сети 12 Вольт выходную мощность 50-70 ватт, но как право такие микросхемные усилители (к примеру — TDA1562) стоят очень дорого, следовательно, нужно искать другое решение.

Одним из дешевых вариантов УМЗЧ для сабвуфера мы сегодня и рассмотрим. Всем хорошо знакомая микросхема TDA2003 — является по крайней мере самой дешевой микросхемой УМЗЧ. Она питается от 12 Вольт и может обеспечить максимальную мощность до 10-12 ватт на нагрузку 2 Ом.

Главным достоинством самой микросхемы является то, что она может работать и с низкоомными динамическими головками с сопротивлением катушки вплоть до 2-х Ом. Микросхема по своей природе монофоническая (одноканальная), следовательно должна иметься мостовая схема, которая позволит поднять выходную мощность усилителя.

Мостовой вариант отлично работает со стандартными головками 4Ом в течении долгого времени, выходная мощность в районе 20Ватт, пиковые броски во время глубоких НЧ до 30 ватт, но разумеется это не чистая мощность. Но питать сабвуфер средней мощности с применением такого варианта умзч вполне реально.

Вторая особенность такого варианта — микросхема стоит копейки (пол доллара за штуку), элементная база в себе содержит всего несколько компонентов, с общей стоимостью не более доллара, но если есть старые платы, можно из них отпаять все нужные компоненты.

Микросхема работает в классе АВ, следовательно без перегрева никак не обойтись, поэтому обязательно микросхемы нужно установить на общий теплоотвод, при этом использовать дополнительные изолирующие прокладки не нужно, поскольку масса у микросхем единая.

Ну вот да - не сошлось у нас сейчас номер части и количество каналов - что уж тут поделаешь.
Теперь мы поговорим о 4-х канальных усилителях. В массе своей, они применяются для автомобильного использования, но, в принципе, ничто не мешает использовать их и дома - характеристики у них вполне приличные, особенно у последнего поколения.
Начнем с TDA7560 , производства SGS-Thomson . Как обычно - это мостовой усилитель класса АВ со всевозможнейшими защитами, функциями Mute и StanBy , а так же, как вы увидите на схеме - практически полным отсутствием навесных элементов.
Ну и еще эта микросхема замечательно работает на нагрузку в 2 Ома.

Схема включения:

То есть фактически, вы берете микросхему, присобачиваете к ней входы-выходы, и уже все работает. Сказка.
Выпускается это создание в корпусе Flexiwatt25 - опять же с полудырками по бокам.

Следующий наш пациент - микросхема TDA8571J от Philips Semiconductors . С этим усилителем товарищи решили повыпендриваться и сделали его мостовым, как и все, но при этом - класса В. А в остальном, как обычно - полный набор защит выхода и температурная защита. Причем, как и у прошлого препариуемого - навесных элементов практически не требуется.

Основные характеристики следующие:

Схема включения:

А усилок то - голый.
Ну если только заходите что на вход Mute повесить. Все это щасте в корпусе SOT411-1 , опять же с полудырками по бокам.

Все - по последней и хватит.
На этот раз последним будет усилитель TDA8591 все той же Philips Semiconductors. По своим характеристикам она похожа на предыдущего оратора, однако умеет работать с 2-х Омной нагрузкой и несколько мощнее. Плюс, у нее есть довольно хитрая схема обнаружения постоянного напряжения на выходе.

Основные характеристики следующие:

Схема включения:

Ну в общем, особо страшного ничего, надо только учесть, что для работы усилителя кнопку S1 необходимо замкнуть. Иначе он будет партизански молчать.
Что касается схемы обнаружения постоянного напряжения на выходе, то если она вам не нужна - можно выкинуть чуть ли не половину пассивных компонентов из схемы. Перечислим этих героев поименно: R1-R6, C14 . А 26 вывод микросхемы подключаем к общему проводу.

Ну вот, пока и все. Разумеется, тему Бриджампов мы на этом не заканчиваем - фактически, мы её только начали.

koreada.ru - Про автомобили - Информационный портал