Алкены в кислой среде. Окисление различных классов органических соединений. Реакции окисления алкенов с сохранением углеродного скелета

Окислительно-восстановительные реакции с участием органических веществ

Склонность органических соединений к окислению связывают с наличием кратных связей, функциональных групп, атомов водорода при атоме углерода, содержащем функциональную группу.

Последовательное окисление органических веществ можно представить в виде следующей цепочки превращений:

Насыщенный углеводород→ Ненасыщенный углеводород → Спирт→ Альдегид (кетон) → Карбоновая кислота →CO 2 + H 2 O

Генетическая связь между классами органических соединений представляется здесь как ряд окислительно – восстановительных реакций, обеспечивающих переход от одного класса органических соединений к другому. Завершают его продукты полного окисления (горения) любого из представителей классов органических соединений.

Зависимость окислительно-восстановительной способности органического вещества от его строения:

Повышенная склонность органических соединений к окислению обусловлена наличием в молекуле веществ:

  • кратных связей (именно поэтому так легко окисляются алкены, алкины, алкадиены);
  • определенных функциональных групп , способных легко окисляться (–-SH, –OH (фенольной и спиртовой), – NH 2 ;
  • активированных алкильных групп , расположенных по соседству с кратными связями. Например, пропен может быть окислен до непредельного альдегида акролеина кислородом воздуха в присутствии водяных паров на висмут- молибденовых катализаторах.

H 2 C═CH−CH 3 → H 2 C═CH−COH

А также окисление толуола до бензойной кислоты перманганатом калия в кислой среде.

5C 6 H 5 CH 3 +6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 COOH + 3K 2 SO 4 + 6MnSO 4 +14H 2 O

  • наличие атомов водорода при атоме углерода, содержащем функциональную группу .

Примером является реакционная способность в реакциях окисления первичных, вторичных и третичных спиртов по реакционной способности к окислению.

Несмотря на то, что в ходе любых окислительно-восстановительных реакций происходит как окисление, так и восстановление, реакции классифицируют в зависимости от того, что происходит непосредственно с органическим соединением (если оно окисляется, говорят о процессе окисления, если восстанавливается – о процессе восстановления).

Так, в реакции этилена с перманганатом калия этилен будет окисляться, а перманганат калия – восстанавливается. Реакцию называют окислением этилена.

Применение понятия «степени окисления» (СО) в органической химии очень ограничено и реализуется, прежде всего, при составлении уравнений окислительно-восстановительных реакций. Однако, учитывая, что более или менее постоянной состав продуктов реакции возможен только при полном окислении (горении) органических веществ, целесообразность расстановки коэффициентов в реакциях неполного окисления отпадает. По этой причине обычно ограничиваются составлением схемы превращений органических соединений.

При изучении сравнительной характеристики неорганических и органических соединений мы знакомились с использованием степени окисления (с.о.) (в органической химии, прежде всего углерода) и способами ее определения:

1) вычисление средней с.о. углерода в молекуле органического вещества:

-8/3 +1

Такой подход оправдан, если в ходе реакции в органическом веществе разрушаются все химические связи (горение, полное разложение).

2) определение с.о. каждого атома углерода:

В этом случае степень окисления любого атома углерода в органическом соединении равна алгебраической сумме чисел всех связей с атомами более электроотрицательных элементов, учитываемых со знаком «+» у атома углерода, и числа связей с атомами водорода (или другого более электроположительного элемента), учитываемых со знаком «-» у атома углерода. При этом связи с соседними атомами углерода не учитывают.

В качестве простейшего примера определим степень окисления углерода в молекуле метанола.

Атом углерода связан с тремя атомами водорода (эти связи учитываются со знаком « – »), одной связью – с атомом кислорода (ее учитывают со знаком «+»). Получаем: -3 + 1 = -2.Таким образом, степень окисления углерода в метаноле равна -2.

Вычисленная степень окисления углерода хотя и условное значение, но оно указывает на характер смещения электронной плотности в молекуле, а ее изменение в результате реакции свидетельствует об имеющем место окислительно-восстановительном процессе.

Уточняем, в каких случаях лучше использовать тот или иной способ.

Процессы окисления, горения, галогенирования, нитрования, дегидрирования, разложения относятся к окислительно-восстановительным процессам.

При переходе от одного класса органических соединений к другому и увеличения степени разветвленности углеродного скелета молекул соединений внутри отдельного класса степень окисления атома углерода, ответственного за восстанавливающую способность соединения, изменяется.

Органические вещества, в молекулах которых содержатся атомы углерода с максимальными (- и +) значениями СО (-4, -3, +2, +3), вступают в реакцию полного окисления-горения, но устойчивых к воздействию мягких окислителей и окислителей средней силы .

Вещества, в молекулах которых содержится атомы углерода в СО -1; 0; +1, окисляются легко, восстановительные способности их близки, поэту их неполное окисление может быть достигнуто за счет одного из известных окислителей малой и средней силы . Эти вещества могут проявлять двойственную природу, выступая и в качестве окислителя , подобно тому, как это присуще неорганическим веществам.

При написании уравнений реакций горения и разложения органических веществ лучше использовать среднее значение с.о. углерода.

Например:

Составим полное уравнение химической реакции методом баланса.

Среднее значение степени окисления углерода в н-бутане:

Степень окисления углерода в оксиде углерода(IV) равна +4.

Составим схему электронного баланса:

Обратите внимание на первую половину электронного баланса: у атома углерода в дробном значении с.о. знаменатель равен 4, поэтому расчет передачи электронов ведем по этому коэффициенту.

Т.е. переход от -2,5 до +4 соответствует переходу 2,5 + 4 = 6,5 единиц. Т.к. участвует 4 атома углерода, то 6,5 · 4 = 26 электронов будет отдано суммарно атомами углерода бутана.

C учетом найденных коэффициентов уравнение химической реакции горения н-бутана будет выглядеть следующим образом:

Можно воспользоваться методом определения суммарного заряда атомов углерода в молекуле:

(4 C ) -10 …… → (1 C ) +4 , учитывая, что количество атомов до знака = и после должно быть одинаково, уравниваем (4 C ) -10 …… →[(1 C ) +4 ] · 4

Следовательно, переход от -10 до +16 связан с потерей 26 электронов.

В остальных случаях определяем значения с.о. каждого атома углерода в соединении, обращая при этом внимание на последовательность замещения атомов водорода у первичных, вторичных, третичных атомов углерода:

Вначале протекает процесс замещения у третичных, затем – у вторичных, и, в последнюю очередь – у первичных атомов углерода.

Алкены

Процессы окисления зависят от строения алкена и среды протекания реакции.

1.При окислении алкенов концентрированным раствором перманганата калия KMnO 4 в кислой среде (жесткое окисление) происходит разрыв σ- и π-связей с образованием карбоновых кислот, кетонов и оксида углерода(IV). Эта реакция используется для определения положения двойной связи.

а) Если двойная связь находится на конце молекулы (например, у бутена-1), то одним из продуктов окисления является муравьиная кислота, легко окисляющаяся до углекислого газа и воды:

б) Если в молекуле алкена атом углерода при двойной связи содержит два углеродных заместителя (например, в молекуле 2-метилбутена-2), то при его окислении происходит образование кетона , т. к. превращение такого атома в атом карбоксильной группы невозможно без разрыва C–C-связи, относительно устойчивой в этих условиях:

в) Если молекула алкена симметрична и двойная связь содержится в середине молекулы, то при окислении образуется только одна кислота:

Особенностью окисления алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, является образование двух кетонов:

2.В нейтральной или слабощелочной средах окисление сопровождается образованием диолов (двухатомных спиртов) , причем гидроксильные группы присоединяются к тем атомам углерода, между которыми существовала двойная связь:

В ходе этой реакции происходит обесцвечивание фиолетовой окраски водного раствора KMnO 4 . Поэтому она используется как качественная реакция на алкены (реакция Вагнера).

3. Окисление алкенов в присутствии солей палладия (Вакер-процесс) приводит к образованию альдегидов и кетонов:

2CH 2 =CH 2 + O 2 PdCl2/H2O → 2 CH 3 -CO-H

Гомологи окисляются по менее гидрированному атому углерода:

СH 3 -CH 2 -CH=CH 2 + 1/2O 2 PdCl2/H2O → CH 3 - CH 2 -CO-CH 3

Алкины

Окисление ацетилена и его гомологов протекает в зависимости от того, в какой среде протекает процесс.

а) В кислой среде процесс окисления сопровождается образованием карбоновых кислот:

Реакция используется для определения строения алкинов по продуктам окисления:

В нейтральной и слабощелочной средах окисление ацетилена сопровождается образованием соответствующих оксалатов (солей щавелевой кислоты), а окисление гомологов – разрывом тройной связи и образованием солей карбоновых кислот:

Для ацетилена:

1) В кислой среде:

H-C≡C-H KMnO 4, H 2 SO 4 → HOOC-COOH (щавелевая кислота)

3CH≡CH +8KMnO 4 H 2 O → 3KOOC-COOK оксалат калия +8MnO 2 ↓+ 2KOH+ 2H 2 O

Арены

(бензол и его гомологи)

При окисления аренов в кислой среде следует ожидать образования кислот, а в щелочной – солей.

Гомологи бензола с одной боковой цепью (независимо от ее длины) окисляются сильным окислителем до бензойной кислоты по α -углеродному атому. Гомологи бензола при нагревании окисляются перманганатом калия в нейтральной среде с образованием калиевых солей ароматических кислот.

5C 6 H 5 –CH 3 + 6KMnO 4 + 9H 2 SO 4 = 5C 6 H 5 COOH + 6MnSO 4 + 3K 2 SO 4 + 14H 2 O,

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 = 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O,

C 6 H 5 –CH 3 + 2KMnO 4 = C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O.

Подчеркиваем, что если в молекуле арена несколько боковых цепей, то в кислой среде каждая из них окисляется по a-углеродному атому до карбоксильной группы, в результате чего образуются многоосновные ароматические кислоты:

1) В кислой среде:

С 6 H 5 -CH 2 -R KMnO 4, H 2 SO 4 → С 6 H 5 -COOH бензойная кислота + CO 2

2) В нейтральной или щелочной среде:

С 6 H 5 -CH 2 -R KMnO4, H2O/(OH) → С 6 H 5 -COOK + CO 2

3) Окисление гомологов бензола перманганатом калия или бихроматом калия при нагревании:

С 6 H 5 -CH 2 -R KMnO 4, H 2 SO 4, t ˚ C → С 6 H 5 -COOH бензойная кислота + R-COOH

4) Окисление кумола кислородом в присутствии катализатора (кумольный способ получения фенола):

C 6 H 5 CH(CH 3) 2 O2, H2SO4 → C 6 H 5 -OH фенол + CH 3 -CO-CH 3 ацетон

5C 6 H 5 CH(CH 3) 2 + 18KMnO 4 + 27H 2 SO 4 → 5C 6 H 5 COOH + 42H 2 O + 18MnSO 4 + 10CO 2 + K 2 SO 4

C 6 H 5 CH(CH 3) 2 + 6H 2 O – 18ē C 6 H 5 COOH + 2CO 2 + 18H + | x 5

MnO 4 - + 8H + + 5ē Mn +2 + 4H 2 O | x 18

Следует обратить внимание на то, что при мягком окислении стирола перманганатом калия КMnO 4 в нейтральной или слабощелочной среде происходит разрыв π -связи,образуется гликоль (двухатомный спирт). В результате реакции окрашенный раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV).

Окисление же сильным окислителем – перманганатом калия в кислой среде – приводит к полному разрыву двойной связи и образованию углекислого газа и бензойной кислоты, раствор при этом обесцвечивается.

C 6 H 5 −CH═CH 2 + 2 KMnO 4 + 3 H 2 SO 4 → C 6 H 5 −COOH + CO 2 + K 2 SO 4 + 2 MnSO 4 +4 H 2 O

Спирты

Следует помнить, что:

1) первичные спирты окисляются до альдегидов:

3CH 3 –CH 2 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O;

2) вторичные спирты окисляются до кетонов:

3) для третичных спиртов реакция окисления не характерна.

Третичные спирты, в молекулах которых нет атома водорода при атоме углерода, содержащем группу ОН, в обычных условиях не окисляются. В жестких условиях (при действии сильных окислителей и при высоких температурах) они могут быть окислены до смеси низкомолекулярных карбоновых кислот, т.е. происходит деструкция углеродного скелета.

При окислении метанола подкисленным раствором перманганата калия или дихромата калия образуется CO 2 .

Первичные спирты при окислении в зависимости от условий протекания реакции могут образовать не только альдегиды, но и кислоты.

Например, окисление этанола дихроматом калия на холоду заканчивается oбразованием уксусной кислоты, а при нагревании – ацетальдегида:

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 = 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O,

Если три или более ОН-групп связаны с соседними атомами углерода, то при окислении иодной кислотой средний или средние атомы превращаются в муравьиную кислоту

Окисление гликолей перманганатом калия в кислой среде проходит аналогично окислительному расщеплению алкенов и также приводит к образованию кислот или кетонов в зависимости от строения исходного гликоля.

Альдегиды и кетоны

Альдегиды легче, чем спирты, окисляются в соответствующие карбоновые кислоты не только под действием сильных окислителей (кислород воздуха, подкисленные растворы KMnO 4 и K 2 Cr 2 O 7), но и под действием слабых (аммиачный раствор оксида серебра или гидроксида меди(II)):

5CH 3 –CHO + 2KMnO 4 + 3H 2 SO 4 = 5CH 3 –COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O,

3CH 3 –CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –COOH + Cr 2 (SO 4) 3 + K 2 SO 4 + 4H 2 O,

CH 3 –CHO + 2OH CH 3 –COONH 4 + 2Ag + 3NH 3 + H 2 O

Особое внимание!!! Окисление метаналя аммиачным раствором оксида серебра приводит к образованию карбоната аммония, а не муравьиной кислоты:

HCH О + 4OH = (NH 4) 2 CO 3 + 4Ag + 6NH 3 + 2H 2 O.

Для составления уравнений окислительно- восстановительных реакций используют как метод электронного баланса, так и метод полуреакций (электронно-ионный метод).

Для органической химии важна не степень окисления атома, а смещение электронной плотности, в результате которого на атомах появляются частичные заряды, никак не согласующиеся со значениями степеней окисления.

Многие вузы включают в билеты для вступительных экзаменов задания по подбору коэффициентов в уравнениях ОВР ионно-электронным методом (методом полуреакций). Если в школе и уделяется хоть какое-то внимание этому методу, то, в основном при окислении неорганических веществ.

Попробуем применить метод полуреакций для окисления сахарозы перманганатом калия в кислой среде.

Преимущество этого метода заключается в том, что нет необходимости сразу угадывать и записывать продукты реакции. Они достаточно легко определяются в ходе уравнения. Окислитель в кислой среде наиболее полно проявляет свои окислительные свойства, например, анион MnO - превращается в катион Mn 2+ , легко окисляющиеся органические соединения окисляются до CO 2 .

Запишем в молекулярном виде превращения сахарозы:

В левой части не хватает 13 атомов кислорода, чтобы устранить это противоречие, прибавим 13 молекул H 2 O.

Левая часть теперь содержит 48 атомов водорода, они выделяются в виде катионов Н + :

Теперь уравняем суммарные заряды справа и слева:

Схема полуреакций готова. Составление схемы второй полуреакции обычно не вызывает затруднений:

Объединим обе схемы:

Задание для самостоятельной работы:

Закончите УХР и расставьте коэффициенты методом электронного баланса или методом полуреакций:

CH 3 -CH=CH-CH 3 + KMnO 4 + H 2 SO 4 →

CH 3 -CH=CH-CH 3 + KMnO 4 + H 2 О

(CH 3) 2 C=C-CH 3 + KMnO 4 + H 2 SO 4 →

CH 3 -CH 2 -CH=CH 2 + KMnO 4 + H 2 SO 4 →

С H 3 -CH 2 -C≡C-CH 3 + KMnO 4 + H 2 SO 4 →

C 6 H 5 -CH 3 + KMnO 4 + H2O →

C 6 H 5 -C 2 H 5 + KMnO 4 + H 2 SO 4 →

C 6 H 5 - CH 3 + KMnO 4 + H 2 SO 4

Мои заметки:

Особое внимание учащихся следует обратить на поведение окислителя – перманганата калия КМnО 4 в различных средах. Это связано с тем, что окислительно-восстановительные ре акции в КИМах встречаются не только в заданиях С1 и С2. В заданиях СЗ, представляющих цепочку превращений органических веществ нередки уравнения окисления-восстановления. В школе часто окислитель записывают над стрелкой как [О]. Требованием к выполнению таких заданий на ЕГЭ является обязательное обозначение всех исходных веществ и продуктов реак ции с расстановкой необходимых коэффициентов.

Алкены – это углеводороды, в молекулах которых есть ОДНА двойная С=С связь.

Номенклатура алкенов: в названии появляется суффикс -ЕН.

Первый член гомологического ряда – С2Н4 (этен).

Для простейших алкенов применяются также исторически сложившиеся названия:

· этилен (этен),

· пропилен (пропен),

В номенклатуре часто используются следующие одновалентные радикалы алкенов:

СН2-СН=СН2

Виды изомерии алкенов:

1. Изомерия углеродного скелета: (начиная с С4Н8 – бутен и 2-метилпропен)

2. Изомерия положения кратной связи: (начиная с С4Н8): бутен-1 и бутен-2.

3. Межклассовая изомерия: с циклоалканами (начиная с пропена):

C4H8 - бутен и циклобутан.

4. Пространственная изомерия алкенов:

Из-за того, что вокруг двойной связи невозможно свободное вращение, становится возможной цис-транс- изомерия .

Алкены, имеющие у каждого из двух атомов углерода при двойной связи различные заместители , могут существовать в виде двух изомеров, отличающихся расположением заместителей относительно плоскости π-связи:

Химические свойства алкенов.

Для алкенов характерны:

· реакции присоединения к двойной связи,

· реакции окисления,

· реакции замещения в «боковой цепи».

1. Реакции присоединения по двойной связи: менее прочная π-связь разрывается, образуется насыщенное соединение.

Это реакции электрофильного присоединения - АЕ.

1) Гидрирование:

СН3-СН=СН2 + Н2 à CH3-CH2-CH3

2) Галогенирование:

СН3-СН=СН2 + Br2 (раствор)à CH3-CHBr-CH2Br

Обесцвечивание бромной воды – качественная реакция на двойную связь.

3) Гидрогалогенирование:

СН3-СН=СН2 + НBr à CH3-CHBr-CH3

(ПРАВИЛО МАРКОВНИКОВА: водород присоединяется к наиболее гидрированному атому углерода).

4) Гидратация - присоединение воды:

СН3-СН=СН2 + НОН à CH3-CH-CH3

(присоединение также происходит по праилу Марковникова)

2. Присоединение бромоводорода в присутствии пероксидов (эффект Хараша) - это радикальное присоединение - АR

СН3-СН=СН2 + HBr -(Н2О2)à СН3-СН2-СН2Br

(реакция с бромоводородом в присутствии пероксида протекает против правила Марковникова )

3. Горение – полное окисление алкенов кислородом до углекислого газа и воды.

С2Н4 + 3О2 = 2СО2 + 2Н2О

4. Мягкое окисление алкенов – реакция Вагнера : реакция с холодным водным раствором перманганата калия.

3СН3-СН=СН2 + 2KMnO4 + 4H2O à 2MnO2 + 2KOH + 3СН3 - СН - СН2

OH OH

(образуется диол)

Обесцвечивание алкенами водного раствора перманганата калия – качественная реакция на алкены.

5. Жесткое окисление алкенов – горячим нейтральным или кислым раствором перманганата калия. Идёт с разрывом двойной связи С=С.

1. При действии перманганата калия в кислой среде в зависимости от строения скелета алкена образуется:

Фрагмент углеродной цепи у двойной связи

Во что превращается

= СН – R

R C OOH карбоновая кислота

= C R

кетон R C R

СН3-С -1 Н =С-2 Н2 +2 KMn+7O4 + 3H2SO4 à

CH3-C +3 OOH + C+4 O2 + 2Mn+2SO4 + K2SO4 + 4H2O

2. Если реакция протекает в нейтральной среде ПРИ нагревании, то соответственно получаются калиевые соли :

Фрагмент цепи у двойной связи

Во что превращается

К2СО3

= СН – R

R C OO К - соль карбоновой кислоты

= C R

кетон R C R

3СН3С -1Н =С -2Н2 +10K MnO4 - tà 3CH 3 C +3OOK + + 3K 2C +4O3 + 10MnO2 +4Н2О+ K OH

6. Окисление кислородом этилена в присутствии солей палладия.

СН2=СН2 + O2 –(kat)à CН3СНО

(уксусный альдегид)

7. Хлорирование и бромирование в боковую цепь: если реакция с хлором проводится на свету или при высокой температуре – идёт замещение водорода в боковой цепи.

СН3-СН=СН2 + Cl2 –(свет)à СН2-СН=СН2 +HCl

8. Полимеризация:

n СН3-СН=СН2 à(-CH–CH2-)n

пропилен ô полипропилен

ПОЛУЧЕНИЕ АЛКЕНОВ

I. Крекинг алканов:

С7Н16 –(t)à CH3- CH=CH2 + C4H10

Алкен алкан

II. Дегидрогалогенирование галогеналканов при действии спиртового раствора щелочи - реакция ЭЛИМИНИРОВАНИЯ.

Правило Зайцева: Отщепление атома водорода в реакциях элиминирования происходит преимущественно от наименее гидрогенизированного атома углерода.

III . Дегидратация спиртов при повышенной температуре (выше 140°C) в присутствии в одоотнимающих реагентов - оксида алюминия или концентрированной серной кислоты – реакция элиминирования.

CH3-CH-CH2 -CH3 (H2SO4,t>140o)à

à H2O +CH3-CH=CH -CH3

(также подчиняется правилу Зайцева)

IV . Дегалогенирование дигалогеналканов , имеющих атомы галогена у соседних атомов углерода , при действии активных металлов.

CH2Br -CHBr -CH3 +Mg àCH2=CH-CH3+MgBr2

Также может использоваться цинк.

V . Дегидрирование алканов при 500°С:

VI . Неполное гидрирование диенов и алкинов

С2Н2 + Н2 (недостаток) –(kat)à С2Н4


АЛКАДИЕНЫ.


Это углеводороды, содержащие две двойные связи. Первый член ряда – С3Н4 (пропадиен или аллен). В названии появляется суффикс – ДИЕН .

Типы двойных связей в диенах:

1.Изолированные двойные связи разделены в цепи двумя или более σ-связями:

СН2=СН–СН2–СН=СН2 . Диены этого типа проявляют свойства, характерные для алкенов.

2. Кумулированные двойные связи расположены у одного атома углерода: СН2=С=СН2 (аллен)

Подобные диены (аллены) относятся к довольно редкому и неустойчивому типу соединений.

3.Сопряженные двойные связи разделены одной σ-связью: СН2=СН–СН=СН2

Сопряженные диены отличаются характерными свойствами, обусловленными электронным строением молекул, а именно, непрерывной последовательностью четырех sp2-атомов углерода.

Изомерия диенов

1. Изомерия положения двойных связей :

2. Изомерия углеродного скелета :

3. Межклассовая изомерия с алкинами и циклоалкенами . Например, формуле С4Н6 соответствуют следующие соединения:

4. Пространственная изомерия

Диены, имеющие различные заместители при углеродных атомах у двойных связей, подобно алкенам, проявляют цис-транс-изомерию .

(1)Цис-изомер (2) Транс-изомер

Электронное строение сопряженных диенов.

Молекула бутадиена-1,3 СН2=СН-СН=СН2 содержит четыре атома углерода в sp 2 - гибридизованном состоянии и имеет плоское строение.

π-Электроны двойных связей образуют единое π-электронное облако (сопряженную систему ) и делокализованы между всеми атомами углерода.

Кратность связей (число общих электронных пар) между атомами углерода имеет промежуточное значение: нет чисто одинарной и чисто двойных связей. Строение бутадиена более точно отражает формула с делокализованными «полуторными» связями.

ХИМИЧЕСКИЕ СВОЙСТВА СОПРЯЖЕННЫХ АЛКАДИЕНОВ.

РЕАКЦИИ ПРИСОЕДИНЕНИЯ К СОПРЯЖЕННЫМ ДИЕНАМ.

Присоединение галогенов, галогеноводородов, воды и других полярных реагентов происходит по электрофильному механизму (как в алкенах).

Помимо присоединения по одной из двух двойных связей (1,2-присоединение), для сопряженных диенов характерно так называемое 1,4-присоединение, когда в реакции участвует вся делокализованная системы из двух двойных связей:

Соотношение продуктов 1,2- и 1,4- присоединения зависит от условий реакции (с повышением температуры обычно увеличивается вероятность 1,4-присоединения).

1. Гидрирование.

CН3-СН2-СН=СН2 (1,2-продукт)

СН2=СН-СН=СН2 + Н2

СН3-СН=СН-СН3 (1,4-продукт)

В присутствии катализатора Ni получается продукт полного гидрирования:

CH2=CH-CH=CH2 + 2 H2 –(Ni, t)à CH3-CH2-CH2-CH3

2. Галогенирование, гидрогалогенирование и гидратация

1,4-присоединение.

1,2-присоединение.

При избытке брома присоединяется еще одна его молекула по месту оставшейся двойной связи с образованием 1,2,3,4-тетрабромбутана.

3. Реакция полимеризации.

Реакция протекает преимущественно по 1,4-механизму, при этом образуется полимер с кратными связями, называемый каучуком :

nСН2=СН-СН=СН2 à (-СН2-СН=СН-СН2-)n

полимеризация изопрена:

nCH2=C–CH=CH2 à(–CH2 –C =CH –CH2 –)n

CH3 CH3 (полиизопрен)

РЕАКЦИИ ОКИСЛЕНИЯ – мягкое, жесткое, а также горение.

Протекают так же, как и в случае алкенов – мягкое окисление приводит к многоатомному спирту, а жесткое окисление – к смеси различных продуктов, зависящих от строения диена:

СН2=СН –СН=СН2 + KMnO4 + H2O à СН2 – СН – СН – СН2 +MnO2 + KOH

Алкадиены горят – до углекислого газа и воды. С4Н6 + 5,5О2 à 4СО2 + 3Н2О

ПОЛУЧЕНИЕ АЛКАДИЕНОВ.

1. Каталитическое дегидрирование алканов (через стадию образования алкенов). Этим путем получают в промышленности дивинил из бутана, содержащегося в газах нефтепереработки и в попутных газах:

Каталитическим дегидрированием изопентана (2-метилбутана) получают изопрен:

2. Синтез Лебедева:

(катализатор – смесь оксидов Al2O3,MgO, ZnO

2 C2H5OH –(Al2O3,MgO, ZnO, 450˚C)à CH2=CH-CH=CH2 + 2H2O + H2

3. Дегидратация двухатомных спиртов:

4. Действие спиртового раствора щелочи на дигалогеналканы (дегидрогалогенирование ):

Алкины с неконцевой тройной связью служат потенциальным источником для синтеза 1,2-дикетонов при действии подходящего окислителя. Однако до сих пор не найдено универсального реагента, вызывающего окисление тройной углерод–углеродной связи до 1,2-дикарбонильной группы. Предлагавшийся для этой цели RuO 4 – оксид рутения (VIII) – слишком дорог и часто вызывает дальнейшую окислительную деструкцию 1,2-дикетонов до карбоновых кислот. При взаимодействии дизамещенных ацетиленов с такими сильными окислителями, как перманганат калия, только в совершенно нейтральной среде при рН 7–8 при 0 С окисление удается остановить на стадии образования -дикетона. Так, например, стеароловая кислота при рН 7,5 окисляется до -дикетона. В большинстве случаев окисление сопровождается расщеплением тройной связи с образованием карбоновых кислот:

Выход продуктов окислительной деструкции алкинов невелик, и эта реакция не играет заметной роли в органическом синтезе. Она используется исключительно для доказательства строения природной ацетиленовой кислоты, содержащейся в листьях тропических растений в Центральной Америке. При ее окислительной деструкции были выделены две кислоты – лауриновая и адипиновая. Это означает, что исходная кислота представляет собой 6-октадециновую кислоту с нормальным углеродным скелетом из семнадцати атомов углерода:

Гораздо более важное значение имеет окислительное сочетание алкинов-1, катализируемое солями меди (реакция Глазера–Эглинтона). В 1870 г. Глазер обнаружил, что суспензия ацетиленида меди (I), в спирте окисляется кислородом воздуха с образованием 1,3-диинов:

Для окисления ацетиленидов меди (I) в качестве окислителя более эффективен гексацианоферрат (III) калия K 3 в ДМЭ или ДМФА. В 1959 г. Эглинтон предложил значительно более удобную модификацию окислительной конденсации алкинов. Алкин окисляют ацетатом меди (II) в растворе пиридина при 60–70 С. Модификация Эглинтона оказалась чрезвычайно полезной для синтеза макроцикличеких полиинов из ,-диинов. В качестве иллюстрации приведем синтез двух циклополиинов при окислительной конденсации гексадиина-1,5 (Ф. Зондхеймер, 1960):

Один из полиинов представляет собой продукт циклотримеризации, другой – циклотетрамеризации исходного гесадиина-1,5. Тример служит исходным реагентом для синтеза ароматического -аннулена (подробнее об аннуленах см. в гл. 12). Аналогично в тех же условиях нонадиина-1,8 получается его димер – 1,3,10,12-циклооктадекатетраен наряду с тримером, тетрамером и пентамером:

Для получения несимметричных диинов используют конденсацию галогенацетиленов с алкином-1 (терминальным алкином) в присутствии солей меди (I) и первичного амина (сочетание по Кадио–Ходкевичу, 1957 г.):

Исходные бромалкины получаются при действии на алкины-1 гипобромита натрия или из ацетиленидов лития и брома:

Медьорганическое производное теминального алкина генерируют непосредственно в реакционной смеси из Cu 2 Cl 2 и алкина-1.

6.3.4. Реакции электрофильного присоединения к тройной связи

Реакции электрофильного присоединения к тройной связи относятся к числу наиболее типичных и важных реакций алкинов. В отличие от электрофильного присоединения к алкенам синтетическое применение этой большой группы реакций намного опережало развитие теоретических представлений о ее механизме. Однако за последние двадцать лет положение существенно изменилось и в настоящее время это одна из бурно развивающихся областей физической органической химии. ВЗМО алкина располагается ниже, чес ВЗМО алкена (гл. 2), и это обстоятельство предопределяет в подавляющем большинстве случаев более низкую скорость присоединения электрофильного агента к алкину по сравнению с алкеном. Другим фактором, определяющим различие в реакционной способности алкинов и алкенов в реакциях электрофильного присоединения, является относительная стабильность интермедиатов, возникающих при присоединении электрофильной частицы к тройной и двойной связям. При присоединении электрофильной частицы Н + или Е + к двойной связи образуется циклический или открытый карбокатион (гл. 5). Присоединение Н + или Е + к тройной связи приводит к образованию открытого или циклического винил-катиона. В линейном открытом винил-катионе центральный атом углерода находится в sp -гибридном состоянии, в то время как вакантная р -орбиталь ортогональна -связи. Поскольку sp -гибридный атом углерода винил-катиона обладает более высокой электроотрицательностью по сравнению с sp 2 -гибридным атомом алкил-катиона, винил-катион должен быть менее стабилен по сравнению с алкил-катионом:

Данные квантовомеханических расчетов, а также термодинамические данные для газовой фазы, полученные с помощью масс-спектрометрии высокого давления и спектроскопии циклотронного резонанса, находятся в полном соответствии с этими рассуждениями. В табл. 6.3 приведены термодинамические данные для образования ряда карбокатионов и углеводородов, относящиеся к газовой фазе при 25 С.

Карбокатион

ΔН f ˚ ккал/моль

Из данных, представленных в тал. 6.3, следует, что винил-катион на 47 ккал/моль менее стабилен, чем содержащий то же число атомов этил-катион. Тот же вывод можно сделать и из энтальпии ионизации в газовой фазе CH 3 CH 2 Cl и CH 2 =CHCl:

Нетрудно заметить, что сочетание обоих факторов - более высокой энергии винил-катиона и низко расположенной ВЗМО алкина - представляет более низкую реакционную способность алкинов по сравнению с алкенами в реакциях электрофильного присоединения. В табл. 6.4 собраны сравнительные данные по присоединению галогенов, сульфен- и селенилхлоридов, трифторуксусной кислоты и воды к различным алкенам и алкинам, не содержащим какой-либо активирующей или дезактивирующей функциональной группы.

Таблица 6.4

Сравнительная характеристика алкинов и алкенов

в реакциях электрофильного присоединения

Субстраты

К алкен /К алкин

Бромирование в уксусной кислоте

СН 2 CH 2 /НССН

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Хлорирование в уксусной кислоте

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

С 4 Н 9 СН=СН 2 /С 6 Н 5 ССН

С 2 Н 5 С=СНС 2 Н 5 /С 2 Н 5 ССС 2 Н 5

Присоединение 4-хлорфенилсульфенхлорида

п -ClС 6 H 4 SeCl

СН 2 =СН 2 /НССН

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Присоединение фенилселенхлорида С 6 Н 5 SeCl

СН 2 =СН 2 /НССН

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Присоединение трифторуксусной кислоты

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

С 2 Н 5 СН=СН 2 /С 2 Н 5 ССН

Кислотно-катализируемая гидратация

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 2 Н 5 СН=СНС 2 Н 5 /С 2 Н 5 ССС 2 Н 5

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Из этих данных следует, что только присоединение кислотных агентов и воды к тройной и двойной связям происходит с близкими скоростями. Присоединение галогенов, сульфенхлоридов и ряда других реагентов к алкенам протекает в 10 2  10 5 раз быстрее, чем к алкинам. Это означает, что углеводороды, содержащие несопряженные тройную и двойную связи, избирательно присоединяют эти реагенты по двойной связи, например:

К данным по сравнительной гидратации алкинов и алкенов следует относиться с осторожностью, поскольку для гидратации алкинов требуется катализ ионами ртути (II), который неэффективен для присоединения воды к двойной связи. Поэтому данные по гидратации тройной и двойной связи, строго говоря, не сопоставимы.

Присоединение галогенов, галогеноводородов, сульфенхлоридов и других электрофильных агентов можно осуществлять ступенчато, что легко проиллюстрировать с помощью следующих примеров:

4.5.б. Окислительное расщепление алкенов

При окислении алкенов щелочным водным раствором перманганата калия при нагревании или раствором KMnO 4 в водной серной кислоте, а также при окислении алкенов раствором оксида хрома (VI) CrO 3 в уксусной кислоте или дихроматом калия и серной кислотой первоначально образующийся гликоль подвергается окислительной деструкции. Конечным результатом является расщепление углеродного скелета по месту двойной связи и образование в качестве конечных продуктов кетонов и (или) карбоновых кислот в зависимости от заместителей при двойной связи. Если оба атома углерода при двойной связи содержат только по одной алкильной группе, конечным продуктом исчерпывающего окисления будет смесь карбоновых кислот, тетразамещенный при двойной связи алкен окисляется до двух кетонов. Однозамещанные алкены с концевой двойной связью расщепляются до карбоновой кислоты и углекислого газа.

Из-за невысоких выходов карбоновых кислот и кетонов, реакции исчерпывающего окисления алкенов в классическом варианте не нашли широкого применения и ранее использовались, в основном, для установления строения исходного алкена по продуктам деструктивного окисления. В настоящее время окисление алкенов (R-CH=CH-R и R-CH=CH 2) до карбоновых кислот (RCOOH) с помощью перманганата или дихромата калия проводят в условиях межфазного катализа. Выходы карбоновых кислот при этом превышают 90%.

4.5.в. Озонолиз алкенов

Реакция алкенов с озоном является наиболее важным методом окислительного расщепления алкенов по двойной связи. В течение многих десятилетий эта реакция служила основным методом определения строения исходного углеводорода, а также находила применение в синтезе разнообразных карбонильных соединений. Реакция алкена с озоном проводится пропусканием тока ~5%-ной смеси озона и кислорода в раствор алкена в хлористом метилене или этилацетате при -80 0 -100 0 С. Окончание реакции контролируется пробой на свободный озон с иодидом калия. Механизм этой своеобразной и сложной реакции установлен главным образом благодаря работам Р Криге. Первым продуктом 1,3-диполярного циклоприсоединения к двойной связи является так называемый мольозонид (1,2,3-триоксолан). Этот аддукт нестабилен и далее самопроизвольно разлагается с раскрытием цикла и образованием в качестве конечного продукта нормального озонида (1,2,4-триоксолана).

В настоящее время общепризнано, что превращение мольозонида в обычный озонид происходит по механизму расщепления - рекомбинации. Мольозонид претерпевает самопроизвольное раскрытие нестабильного 1,2,3-триоксоланового цикла с образованием карбонильного соединения и биполярного иона, которые далее реагируют между собой также по схеме 1,3-диполярного циклоприсоединения.

Приведенная схема перегруппировки мольозонида в нормальный озонид подтверждается тем, что если до полного образования озонида в реакционной смеси присутствует в качестве "перехватчика" биполярного иона другое карбонильное соединение, то образуется так называемый "смешанный озонид". Так, например, при озонилизе цис -стильбена в присутствии бензальдегида, меченного изотопом 18 О, метка входит в состав эфирного, а не перекисного мостика озонида:

Этот результат хорошо согласуется с образованием смешанного озонида при рекомбинации биполярного иона с меченным бензальдегидом:

Озониды представляют собой очень нестабильные соединения, разлагающиеся со взрывом. Их не выделяют в индивидуальном виде, а расщепляют при действии самых разнообразных регентов. Следует различать восстановительное и окислительное расщепление. При гидролизе озониды медленно расщепляются на карбонильные соединения и перекись водорода. Перекись водорода окисляет альдегиды до карбоновых кислот. Это так называемое окислительное разложение озонидов:

Таким образом, при окислительном разложении озонидов образуются карбоновые кислоты и (или) кетоны в зависимости от строения исходного алкена. В качестве окислителей можно использовать кислород воздуха, перекись водорода, перкислоты или гидроокись серебра. Наиболее часто в синтетической практике для этой цели используют перекись водорода в уксусной или муравьиной кислоте, а также перекись водорода в щелочной среде.

На практике метод окислительного разложения озонидов используется, в основном, для получения карбоновых кислот.

Более важное значение имеет восстановительное расщепление озонидов. В качестве восстановителей наиболее часто используются цинк и уксусная кислота, трифенилфосфин или диметилсульфид. В этом случае конечными продуктами озонолиза оказываются альдегиды или кетоны в зависимости от строения исходного алкена.

Из приведенных выше примеров видно, что тетразамещенный при двойной связи алкен при озонолизе и последующем восстановительном разложении озонида образует два кетона, тогда как тризамещенный алкен дает кетон и альдегид. Дизамещенный симметричный алкен при озонолизе образует два альдегида, а алкены с концевой связью - альдегид и формальдегид.

Интересной модификацией озонолиза является метод, где в качестве восстановителя озонида используется боргидрид натрия, В этом случае конечными продуктами реакции оказываются первичные или вторичные спирты, образующиеся при восстановлении соответственно альдегидов и кстонов.

Озонолиз алкенов - это сложный, трудоемкий и взрывоопасный процесс, требующий применения специальной аппаратуры. По этой причине были разработаны другие методы окислительного расщепления алкенов до карбонильных соединений и карбоновых кислот, которые с успехом заменяют реакцию озонолиза в синтетической практике.

Один из современных препаративных методов окислительной деструкции алкенов был предложен в 1955 г Р. Лемье. В основе этого метода лежит гидроксилирование алкенов с помощью перманганата калия с последующим расщеплением вицинального гликоля периодатом натрия NaIO 4 при рН ~ 7 8. Периодат сам по себе не взаимодействует с алкеном. Продуктами этого двухстадийного окислительного расщепления являются кетоны или карбоновые кислоты, поскольку альдегиды в этих условиях также окисляются до карбоновых кислот. В методе Лемье не возникает трудоемкой проблемы отделения одного из продуктов реакции, - двуокиси марганца, так как и двуокись, и манганат вновь окисляются периодатом до перманганат-иона. Это позволяет использовать только каталитические количества перманганата калия. Ниже приведены некоторые типичные примеры окислительного расщепления алкенов по методу Лемье.

Цитронеллол - спирт, входящий в состав розового масла, масла герани и лимона, - окисляется смесью перманганата калия и периодата натрия в водном ацетоне при 5 10 0 С до 6-гидрокси-4-метилгексанкарбоновой кислоты с количественным выходом.

В другой разновидности этого метода вместо перманганата калия используют каталитические количества тетраоксида осмия (Лемье, Джонсон 1956 г). Особое достоинство комбинации OsO 4 и NaIO 4 заключается в том, что она позволяет остановить окисление на стадии альдегида. Тетраоксид осмия присоединяется к двойной связи алкена с образованием осмата, который окисляется периодатом натрия до карбонильных соединений с регенерацией четырехокиси осмия.

Вместо тетраоксида осмия можно использовать и тетраоксид рутения RuO 4 . Окислительная деструкция алкенов по Лемье-Джонсону приводит к тем же продуктам, что и озонолиз с восстановительным расщеплением озонидов.

В терминах, характерных для современной органической химии, это означает, что комбинация OsO 4 -NaIO 4 представляет собой синтетический эквивалент реакции озонолиза алкенов с последующим восстановительным расщеплением. Аналогично, окисление алкенов смесью перманганата и периодата - это синтетический эквивалент озонолиза с окислительным разложением озонидов.

Таким образом, окисление алкенов - это не только совокупность препаративных методов получения спиртов, эпоксидов, диолов, альдегидов, кетонов и карбоновых кислот, это также один из возможных путей установления структуры исходного алкена. Так, по результату, окислительной деструкции алкена можно определить положение двойной связи в молекуле, тогда как стереохимический результат син- или анти- гидроксилирования алкена позволяет сделать вывод о его геометрии.

В окислительно-восстановительных реакциях органические вещества чаще проявляют свойства восстановителей, а сами окисляются. Легкость окисления органических соединений зависит от доступности электронов при взаимодействии с окислителем. Все известные факторы, вызывающие увеличение электронной плотности в молекулах органических соединений (например, положительные индуктивный и мезомерные эффекты), будут повышать их способность к окислению и наоборот.

Склонность органических соединений к окислению возрастает с ростом их нуклеофильности , что соответствует следующим рядам:

Рост нуклеофильности в ряду

Рассмотрим окислительно-восстановительные реакции представителей важнейших классов органических веществ с некоторыми неорганическими окислителями.

Окисление алкенов

При мягком окислении алкены превращаются в гликоли (двухатомные спирты). Атомы-восстановители в этих реакциях – атомы углерода, связанные двойной связью.

Реакция с раствором перманганата калия протекает в нейтральной или слабо щелочной среде следующим образом:

3C 2 H 4 + 2KMnO 4 + 4H 2 O → 3CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH

В более жестких условиях окисление приводит к разрыву углеродной цепи по двойной связи и образованию двух кислот (в сильно щелочной среде – двух солей) или кислоты и диоксида углерода (в сильно щелочной среде – соли и карбоната):

1) 5CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5C 2 H 5 COOH + 8MnSO 4 + 4K 2 SO 4 + 17H 2 O

2) 5CH 3 CH=CH 2 + 10KMnO 4 + 15H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 10MnSO 4 + 5K 2 SO 4 + 20H 2 O

3) CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 10KOH → CH 3 COOK + C 2 H 5 COOK + 6H 2 O + 8K 2 MnO 4

4) CH 3 CH=CH 2 + 10KMnO 4 + 13KOH → CH 3 COOK + K 2 CO 3 + 8H 2 O + 10K 2 MnO 4

Дихромат калия в сернокислотной среде окисляет алкены аналогично реакциям 1 и 2.

При окислении алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, происходит образование двух кетонов:


Окисление алкинов

Алкины окисляются в несколько более жестких условиях, чем алкены, поэтому они обычно окисляются с разрывом углеродной цепи по тройной связи. Как и в случае алкенов, атомы-восстановители здесь – атомы углерода, связанные кратной связью. В результате реакций образуются кислоты и диоксид углерода. Окисление может быть проведено перманганатом или дихроматом калия в кислотной среде, например:

5CH 3 C≡CH + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 8MnSO 4 + 4K 2 SO 4 + 12H 2 O

Ацетилен может быть окислен перманганатом калия в нейтральной среде до оксалата калия:

3CH≡CH +8KMnO 4 → 3KOOC –COOK +8MnO 2 +2КОН +2Н 2 О

В кислотной среде окисление идет до щавелевой кислоты или углекислого газа:

5CH≡CH +8KMnO 4 +12H 2 SO 4 → 5HOOC –COOH +8MnSO 4 +4К 2 SO 4 +12Н 2 О
CH≡CH + 2KMnO 4 +3H 2 SO 4 → 2CO 2 + 2MnSO 4 + 4H 2 O + K 2 SO 4

Окисление гомологов бензола

Бензол не окисляется даже в довольно жестких условиях. Гомологи бензола могут быть окислены раствором перманганата калия в нейтральной среде до бензоата калия:

C 6 H 5 CH 3 +2KMnO 4 → C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O

C 6 H 5 CH 2 CH 3 + 4KMnO 4 → C 6 H 5 COOK + K 2 CO 3 + 2H 2 O + 4MnO 2 + KOH

Окисление гомологов бензола дихроматом или перманганатом калия в кислотной среде приводит к образованию бензойной кислоты.

5С 6 Н 5 СН 3 +6КMnO 4 +9 H 2 SO 4 → 5С 6 Н 5 СООН+6MnSO 4 +3K 2 SO 4 + 14H 2 O

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 → 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O


Окисление спиртов

Непосредственным продуктом окисления первичных спиртов являются альдегиды, а вторичных – кетоны.

Образующиеся при окислении спиртов альдегиды легко окисляются до кислот, поэтому альдегиды из первичных спиртов получают окислением дихроматом калия в кислотной среде при температуре кипения альдегида. Испаряясь, альдегиды не успевают окислиться.

3C 2 H 5 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 → 3CH 3 CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O

С избытком окислителя (KMnO 4 , K 2 Cr 2 O 7) в любой среде первичные спирты окисляются до карбоновых кислот или их солей, а вторичные – до кетонов.

5C 2 H 5 OH + 4KMnO 4 + 6H 2 SO 4 → 5CH 3 COOH + 4MnSO 4 + 2K 2 SO 4 + 11H 2 O

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 → 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

Третичные спирты в этих условиях не окисляются, а метиловый спирт окисляется до углекислого газа.

Двухатомный спирт, этиленгликоль HOCH 2 –CH 2 OH, при нагревании в кислой среде с раствором KMnO 4 или K 2 Cr 2 O 7 легко окисляется до щавелевой кислоты, а в нейтральной – до оксалата калия.

5СН 2 (ОН) – СН 2 (ОН) + 8КMnO 4 +12H 2 SO 4 → 5HOOC –COOH +8MnSO 4 +4К 2 SO 4 +22Н 2 О

3СН 2 (ОН) – СН 2 (ОН) + 8КMnO 4 → 3KOOC –COOK +8MnO 2 +2КОН +8Н 2 О

Окисление альдегидов и кетонов

Альдегиды – довольно сильные восстановители, и поэтому легко окисляются различными окислителями, например: KMnO 4 , K 2 Cr 2 O 7 , OH, Cu(OH) 2 . Все реакции идут при нагревании:

3CH 3 CHO + 2KMnO 4 → CH 3 COOH + 2CH 3 COOK + 2MnO 2 + H 2 O

3CH 3 CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 → 3CH 3 COOH + Cr 2 (SO 4) 3 + 7H 2 O

CH 3 CHO + 2KMnO 4 + 3KOH → CH 3 COOK + 2K 2 MnO 4 + 2H 2 O

5CH 3 CHO + 2KMnO 4 + 3H 2 SO 4 → 5CH 3 COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O

CH 3 CHO + Br 2 + 3NaOH → CH 3 COONa + 2NaBr + 2H 2 O

реакция «серебряного зеркала»

C аммиачным раствором оксида серебра альдегиды окисляются до карбоновых кислот которые в аммиачном растворе дают соли аммония (реакция «серебрянного зеркала»):

CH 3 CH=O + 2OH → CH 3 COONH 4 + 2Ag + H 2 O + 3NH 3

CH 3 –CH=O + 2Cu(OH) 2 → CH 3 COOH + Cu 2 O + 2H 2 O

Муравьиный альдегид (формальдегид) окисляется, как правило, до углекислого газа:

5HCOH + 4KMnO 4 (изб ) + 6H 2 SO 4 → 4MnSO 4 + 2K 2 SO 4 + 5CO 2 + 11H 2 O

3СН 2 О + 2K 2 Cr 2 O 7 + 8H 2 SO 4 → 3CO 2 +2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

HCHO + 4OH → (NH 4) 2 CO 3 + 4Ag↓ + 2H 2 O + 6NH 3

HCOH + 4Cu(OH) 2 → CO 2 + 2Cu 2 O↓+ 5H 2 O

Кетоны окисляются в жестких условия сильными окислителями с разрывом связей С-С и дают смеси кислот:

Карбоновые кислоты. Среди кислот сильными восстановительными свойствами обладают муравьиная и щавелевая, которые окисляются до углекислого газа.

НСООН + HgCl 2 =CO 2 + Hg + 2HCl

HCOOH+ Cl 2 = CO 2 +2HCl

HOOC-COOH+ Cl 2 =2CO 2 +2HCl

Муравьиная кислота , кроме кислотных свойств, проявляет также некоторые свойства альдегидов, в частности, восстановительные. При этом она окисляется до углекислого газа. Например:

2KMnO4 + 5HCOOH + 3H2SO4 → K2SO4 + 2MnSO4 + 5CO2 + 8H2O

При нагревании с сильными водоотнимающими средствами (H2SO4 (конц.) или P4O10) разлагается:

HCOOH →(t) CO + H2O

Каталитическое окисление алканов:

Каталитическое окисление алкенов:

Окисление фенолов:

koreada.ru - Про автомобили - Информационный портал