Существенные характеристики кристаллической структуры кратко. Кристаллы. Атомно-кристаллическое строение металлов

БРАВЕ РЕШЕТКИ

Схема построения

БРАВЕ́ РЕШЕТКИ, 14 трехмерных геометрических решеток, характеризующих все возможные типы трансляционной симметрии кристаллов. Браве решетки образуются действием операции переноса (трансляции) на любую точку кристалла.

О. Браве в 1848 показал, что все многообразие кристаллических структур можно описать с помощью 14 типов решеток, отличающихся формами элементарных ячеек и симметрией и подразделяющихся на 7 кристаллографических сингоний. Эти решетки были названы решетками Браве.

Решетки Браве различаются симметрией элементарной ячейки, т. е. соотношением между ее ребрами и углами, а также центрированностью.

Для выбора ячейки Браве используют три условия:

Симметрия элементарной ячейки должна соответствовать симметрии кристалла, точнее наиболее высокой симметрии той сингонии, к которой относится кристалл. Ребра элементарной ячейки должны быть трансляциями решетки;

Элементарная ячейка должна содержать максимально возможное число прямых углов или равных углов и равных ребер;

Элементарная ячейка должна иметь минимальный объем.

По характеру взаимного расположения основных трансляций или расположению узлов все кристаллические решетки разбиваются на четыре типа: примитивные (Р ), базоцентрированные (С ), объемно-центрированные (I ), гранецентрированные (F ).

В примитивной Р -ячейке узлы решетки располагаются только по вершинам ячейки, в объемно-центрированной I -ячейке - один узел в центре ячейки, в гранецентрированной F -ячейке - по одному узлу в центре каждой грани, в базоцентрированной С -ячейке - по одному узлу в центрах пары параллельных граней.

Совокупность координат узлов, входящих в элементарную ячейку, называется базисом ячейки. Всю кристаллическую структуру можно получить, повторяя узлы базиса совокупностью трансляций ячейки Браве.

Для некоторых сингоний элементарная ячейка может содержать узлы не только в углах, но и в центре ячейки, всех или некоторых граней. При этом возможен трансляционный перенос не только на периоды элементарной ячейки, но и на половины диагоналей граней ячейки или пространственных диагоналей. Кроме обязательной трансляционной инвариантности, решетка может переходить в себя при других преобразованиях, к которым относятся повороты, отражения и инверсии. Именно эти дополнительные симметрии определяют тип решетки Браве и отличают ее от других.



Типы решеток Браве:

Кубические: примитивная, объемно-центрированная и гранецентрированная;

Гексагональная, тригональная;

Тетрагональные: примитивная и объемно-централизованная;

Ромбические: примитивная, базо-, объемно- и гранецентрированные;

Моноклинные: примитивная и базоцентрированная;

Триклинная.


Сингони́я (от греч. σύν, «согласно, вместе, рядом», и γωνία, «угол» - дословно «сходноугольность») - классификация кристаллографических групп симметрии, кристаллов и кристаллических решёток в зависимости от системы координат (координатного репера). Группы симметрии с единой координатной системой объединяются в одну сингонию.

Кристаллы, принадлежащие к одной и той же сингонии, имеют подобные углы и рёбра элементарных ячеек.

· Триклинная: {\displaystyle a\neq b\neq c}, {\displaystyle \alpha \neq \beta \neq \gamma \neq 90^{\circ }}

· Моноклинная: {\displaystyle a\neq b\neq c}, {\displaystyle \alpha =\gamma =90^{\circ },\beta \neq 90^{\circ }}

· Ромбическая: {\displaystyle a\neq b\neq c}, {\displaystyle \alpha =\beta =\gamma =90^{\circ }}

· Тетрагональная: {\displaystyle a=b\neq c}, {\displaystyle \alpha =\beta =\gamma =90^{\circ }}

· Гексагональная: {\displaystyle a=b\neq c}, {\displaystyle \alpha =\beta =90^{\circ },\gamma =120^{\circ }}

· Кубическая: {\displaystyle a=b=c}, {\displaystyle \alpha =\beta =\gamma =90^{\circ }}

Основные характеристики кристаллических структур

Кристаллические мат-лы характ наличием дальнего порядка, кот характ. тем, что в нем можно выделить некий объем, расположение атома в котором повторяется но всему объему.

В аморфных мат-ах имеет место ближний порядок, кот. характ. тем. что нет повторения объемов.

Крист. структуру удобно описывать с помощью З х мерной сетки прямых липни, которые делят прос-во на параллелепипиды равных размеров. Пересеч линий образ 3 х мерную пространств. решетку. Узлы решетки, как правило, соответствуют расположению атомов в кристалле. Атом колеблется

около этих положений. Если в такой пространственной решетке можно выделить некий объем, перемещением которого в 3 х направ. позволяет выстроив весь кристалл, то гов. Что найдена элемент, ячейка.

Элемент ячейку принято характеризовать 6 параметрами: а, Ь, с - длина ребер параллелепипеда, α, β, γ.

Форма элемент ячейки определяет кристаллографическую систему координат - сингония. В качестве осей выбирают направления ребер -элем, ячейки, а сами ребра являются единицами измерения. Число прямых углов и равных сторон должно быть mах,а объем элем ячейки должен быть min.

Молекул в кристалле. Кристаллическая структура определяется кристаллической решёткой, симметрией кристалла, формой и размерами его элементарной ячейки, типом и координатами атомов в ячейке. В идеальном кристалле содержание и положения атомов во всех ячейках одинаковые. За исключением химического состава все остальные характеристики кристаллической структуры определяются дифракционными методами - рентгеновского структурного анализа, электронографии, нейтронографии структурной. В кристаллах твёрдых растворов и при других отклонениях химического состава от стехиометрии структурный анализ высокой точности позволяет определить и уточнить соответствующие параметры.

При падении на монокристалл излучения с длиной волны порядка межатомных расстояний возникает дифракционная картина, которая состоит из дискретного набора пиков. Положения пиков определяются кристаллической решёткой, а их интенсивности зависят от типа атомов и их расположения в элементарной ячейке кристалла. Наличие в кристалле элементов симметрии проявляется в равенстве интенсивностей соответствующих пиков. Исключение составляет то, что дифракционная картина всегда центросимметрична (независимо от наличия или отсутствия центра симметрии в кристалле). Вследствие этого с помощью рентгеноструктурного анализа можно различить только 122 группы из 230 пространственных (фёдоровских) групп симметрии кристаллов. Наличие (или отсутствие) центра симметрии в кристалле можно установить по статистике распределения интенсивностей дифракционных пиков. Экспериментальное определение отсутствия центра симметрии возможно, если в кристалле есть атомы с аномальным рассеянием используемого излучения. Наиболее сложной является методика определения координат атомов в элементарной ячейке кристалла.

Рассмотрим кристаллическую структуру некоторых элементов периодической системы. Так, в двух модификациях полония различной симметрии содержится по 1 атому в элементарной ячейке. В элементарных ячейках кристаллов калия, цинка, молибдена и ряда других элементов содержится по 2 атома, в ячейке теллура - 3, а в двух модификациях марганца по 20 и 58 атомов в ячейке соответственно. В кристаллах неорганических и органических соединений могут находиться от единиц до сотен атомов в ячейке. В кристаллах белков от тысяч до сотни тысяч атомов, а в закристаллизованных вирусах ещё на 2-3 порядка больше.

Рассмотрим кристаллическую структуру кристаллов различной природы. Кристаллы ниобата лития LiNbO 3 широко применяются в лазерной технике и оптике. На рисунке 1 представлены два изображения его кристаллической структуры. В первом случае атомы - шарики. Крупные анионы кислорода не позволяют увидеть общую организацию строения кристалла. Л. Полинг предложил изображать неорганические структуры в форме полиэдров, вершины которых являются центрами анионов, а внутри полиэдров находится соответствующий катион. В представленном на рисунке 1, б ниобате лития это октаэдры и .

Кристаллы семейства ниобата стронция-бария Sr 1-x Ba x Nb 2 О 6 характеризуются нелинейными оптическими, пиро и пьезоэлектрическими свойствами (смотри Пироэлектрики, Пьезоэлектричество), которыми можно целенаправленно управлять, меняя соотношение стронция и бария. На рисунке 2 представлена кристаллическая структура этих кристаллов, из которой видно, что часть атомов стронция занимает собственную позицию, а в другой позиции статистически расположены атомы бария и стронция, координаты которых несколько различаются.

Кристаллические структуры органических соединений обычно представляют собой плотную упаковку молекул, связанных слабыми ван-дер-ваальсовыми и, возможно, водородными связями. Кристаллы органических соединений находят применение в технике, однако часто их получают только для того, чтобы рентгеновскими методами установить атомное строение молекул, так как органические соединения в растворах (а биологически активные соединения в организме) действуют в качестве отдельных молекул. Структуры молекул антибиотиков - аналогов энниатина В и споридесмолида представлены на рисунке 3. Первое соединение является препаратом для избирательного транспорта катионов через биологические мембраны, а второе - лишено этого свойства из-за внутримолекулярных водородных связей, хотя обе молекулы циклические и состоят из 6 аминокислотных остатков. Различие в строении молекул установлено по кристаллической структуре соответствующих кристаллов.

Современный структурный анализ высокой точности позволяет определять не только координаты атомов, но и параметры тепловых колебаний атомов с учётом анизотропии и ангармонизма этих колебаний. Для не очень сложных соединений рентгеноструктурным анализом можно установить распределение электронной плотности в их кристаллах. Структурные методы чувствительны к нарушению стехиометрии химического состава кристалла и к его всевозможным дефектам. Обширный материал о структурах кристаллических веществ представлен в электронных базах данных (смотри Кристаллохимия).

Лит.: Белов Н. В. Структура ионных кристаллов и металлических фаз. М., 1947; он же. Структурная кристаллография. М., 1951; Китайгородский А. И. Органическая кристаллохимия. М., 1947; Федоров Е. С. Симметрия и структура кристаллов. М.; Л., 1949; Бландел Т., Джонсон Л. Кристаллография белка. М., 1979.

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА , расположение атомов кристаллич. в-ва в пространстве. наиб. характерное св-во кристаллической структуры - трехмерная периодичность (см. Кристаллическое состояние). Обычно, говоря о кристаллической структуре, подразумевают среднее во времени расположение атомных ядер (т. наз. статич. модель); более полная информация включает сведения об амплитудах и частотах колебаний атомов (динамич. модель), а также о распределении электронной плотности в межъядерном пространстве. Изучение кристаллических структур и их связи со св-вами в-в составляет предмет кристаллохимии . Геом. характеристики кристаллической структуры, данные о распределении электронной плотности , амплитуды колебаний атомов (точнее, среднеквадратичные смещения от положений равновесия) находят с помощью дифракционных методов исследования (рентгеноструктурного анализа, нейтронографии и электронографии кристаллов), частоты колебаний - методами спектроскопии (ИК, комбинац. рассеяния, неупругого рассеяния нейтронов). Моделирование кристаллической структуры. Идеальная кристаллическая структура характеризуется бесконечной пространств. решеткой, т.е. состоит из идентичных элементарных ячеек. Последние имеют форму параллелепипедов со сторонами а, b, с и углами a , b , g (параметры решетки) и соприкасаются целыми гранями. В реальных кристаллах кристаллическая структура всегда искажена дефектами , а также наличием пов-сти кристалла . Иногда вместо термина "кристаллическая структура" употребляют термин "кристаллич. решетка"; предпочтительнее, однако, придавать последнему иное содержание (см. Кристаллы). Чтобы описать статич. модель кристаллической структуры, необходимо указать ее симметрию , выражаемую одной из пространственных (федоровских) групп, параметры решетки и координаты атомных ядер в ячейке; эти данные позволяют вычислить межатомные расстояния и валентные углы . Первичная трактовка такой модели при наличии между атомами ковалентных связей состоит в том, что атомы соединяют валентными штрихами в соответствии с классич. теорией хим. строения. Межатомные расстояния указывают правильный способ проведения валентных штрихов: обычно расстояние А - В, соответствующее ковалентной связи , существенно короче, чем кратчайшее расстояние между валентно не связанными атомами А и В. Если ковалентные связи отсутствуют (превалируют ионные, металлич. или ван-дер-ваальсовы межатомные взаимод.), модель кристаллической структуры представляют в виде плотной упаковки , образованной шарами одинакового размера (простые в-ва) или шарами неск.

Рис. 1. Эллипсоиды тепловых колебаний атомов в структуре m -ацетилен-бис(циклопентадиенникеля) при 300 К (а) и 77 К (6). В центре молекула ацетилена , по бокам - молекулы циклопентадиена.

сортов (напр., анионы образуют упаковку, катионы располагаются в ее пустотах). Учет трехмерного распределения электронной плотности р в пространстве декартовых координат х, у, z приводит к модели кристаллической структуры, согласно к-рой атомные ядра "погружены" в непрерывно распределенный с плотностью р электронный заряд. Совр. прецизионный рентгеноструктурный анализ позволяет экспериментально изучать особенности ф-ции r (х, у, z) и определять изменение электронной плотности атомов в кристалле в сравнении с электронной плотностью r 0 валентно не связанных атомов , получаемой в результате квантовохим. расчетов. Эти данные м. б. полезны для установления областей локализации валентных и неподеленных электронных пар , для обнаружения переноса заряда и др. особенностей строения в-в с ковалентными связями , а также в-в, в к-рых направленные межатомные взаимод. отсутствуют. Для отражения динамики атомов в кристаллической структуре в гармонич. приближении атомы изображают в виде "тепловых эллипсоидов", к-рые имеют след. физ. смысл: с фиксир. вероятностью р в любой момент времени атомное ядро находится внутри или на пов-сти такого эллипсоида (рис. 1). Направление наиб. вытянутости эллипсоида соответствует направлению, в к-ром атом совершает максимальные по амплитуде колебания, направление наиб. сжатия соответствует минимальным по размаху колебаниям. Обычно производят нормировку на вероятность р= 1 / 2 . При данной р размеры эллипсоидов зависят от т-ры. Чтобы количественно охарактеризовать форму и ориентацию атомных тепловых эллипсоидов, для каждого атома указывают 6 независимых компонентов симметричного тензора 2-го ранга, значения к-рых определяют по данным рентгеноструктурного исследования. Описанная динамич. модель не дает сведений о мгновенной структуре кристалла и о последоват. смене мгновенных структур. Информацию такого рода можно получить из спектров неупругого рассеяния нейтронов . Классификация кристаллических структур. В принципе каждому кристаллич. в-ву присуща своя структура. Однако часто разные в-ва имеют кристаллические структуры, одинаковые с точностью до подобия (т. наз. изоструктурность). Иногда такие в-ва способны образовывать смешанные кристаллы (см. Изоморфизм). С др. стороны, одно и то же хим. соед. в разных термодинамич. условиях и при разных способах получения может иметь разные кристаллические структуры (см. Полиморфизм). Кристаллические структуры очень многообразны - от простых (напр., у алмаза) до чрезвычайно сложных (напр., у бора). Изучены кристаллические структуры неск. десятков тысяч в-в, включая белки и др. сложные прир. соед. Для неск. сотен кристаллич. в-в (как неорг., так и орг.) изучено распределение электронной плотности в кристаллах . К ристаллические структуры делят нагомодесмические (координационные) и гетеродесмические. В первых все атомы соединены одинаковыми хим. связями, образующими пространств. каркас (напр., алмаз , галогениды щелочных металлов). Для вторых характерно наличие структурных фрагментов, внутри к-рых атомы соединены наиб. прочными (чаще всего ковалентными) связями; атомы , принадлежащие разл. фрагментам, связаны существенно слабее. Фрагменты могут представлять собой конечные группировки атомов ("острова"), цепи, слои, каркасы; соотв. выделяют островные, цепочечные, слоистые и каркасные кристаллические структуры. Островными кристаллическими структурами обладают почти все орг. соед., а также галогены , О 2 , S, (NH 4) 2 SO 4 и др. Роль островов играют молекулы (см. Молекулярные кристаллы) или многоатомные ионы . Цепочечную кристаллическую структуру имеет, напр., одна из модификаций Se, в к-рой атомы связаны в бесконечные спирали . Слоистое строение имеют графит , BN, MoS 2 и др. Пример каркасной кристаллической структуры - кристаллы СаТiO 3: атомы Ti и О, соединенные ковалентными связями , образуют ажурный каркас, в полостях к-рого расположены атомы Са. Известны кристаллические структуры, в к-рых сосуществуют структурные фрагменты разных типов. Так, кристаллы комплексного соед. N(CH 3) 4 построены из "островов" - ионов N(CH 3) 4 и цепей, образованных атомами Мn, связанными мостиковыми атомами Cl. Часто встречаются кристаллические структуры с неполной упорядоченностью, в к-рых отдельные атомы или структурные фрагменты статистически занимают неск. возможных положений (напр., статистич. наложение слоев в CdI 2). В нек-рых кристаллических структурах при достаточно высокой т-ре отдельные группы атомов или даже целые молекулы находятся в состоянии почти свободного или заторможенного вращения. По характеру связи между атомами или структурными фрагментами различают ковалентные кристаллы , ионные кристаллы , металлические кристаллы и ван-дер-ваальсовы кристаллы . Последняя группа включает, в частности, молекулярные кристаллы . Это деление (как и деление хим. связи на типы) условно, однако типичные представители разных групп резко различаются по св-вам, напр. по энергии структуры (энергия, необходимая для разъединения

Способы описания и изображения атомного

Строения кристалла

Кристаллы

Периодичность структуры является наиболее характерным свойством кристаллов. В периодической решетке всегда можно выделить элементарную ячейку , транслируя которую в пространстве легко получить представление о структуре всего кристалла. Образование каким-либо элементом или соединением определенной пространственной решетки в основном зависит от размеров атомов и электронной конфигурации их внешних оболочек.

Русский ученый Е. С. Федоров почти за 40 лет до того, как были найдены методы рентгеноструктурного анализа, рассчитал возможные расположения частиц в кристаллических решетках различных веществ и предложил 230 пространственных гпупп. Геометрически возможны лишь 14 различных пространственных решеток, получивших название решеток Браве и являющихся основой шести кристаллических систем, приведенных в табл. 2.1 и на рис. 2.1. Иногда считают ромбоэдрическую, или тригональную, систему (а = b = с ; α = β = γ ≠ 90°) самостоятельной седьмой системой.

Если атомы расположены только в вершинах элементарной ячейки, то решетка называется примитивной или простой . Если атомы есть и на гранях или в объеме ячейки, то решетка будет сложной (например, базо-, объемо- и гранецентрированной).

Кристаллические тела могут быть в виде отдельных крупных кристаллов - монокристаллов или состоять из совокупности большого числа мелких кристалликов (зерен).

Таблица 2.1

Пространственные решетки кристаллических систем

Кристалличе- ская система Пространственная решетка Соотношение между осевыми углами и осевыми единицами
1. Триклинная I – простая a b c ; α β γ ≠ 90°
2. Моноклинная II – простая III – базоцентрированная a b c ; α = γ = 90°; β ≠ 90°
3. Ромбическаяили орторомбическая IV – простая V – базоцентрированная VI – объемноцентрированная VII – гранецентрированная a b c ; α = β = γ = 90°
4. Гексагональная VIII – простая IX – ромбоэдрическая a = b c ; α = β = 90°; γ = 120°
5. Тетрагональная X – простая XI – объемноцентрированная a = b c ; α = β = γ = 90°
6. Кубическая XII – простая XIII ‑ объемноцентрированная XIV – гранецентрированная a = b = c ; α = β = γ = 90°

Рис. 2.1. Решетки Браве

В случае поликристалла в пределах каждого зерна атомы расположены периодически, но при переходе от одного зерна к другому на границах раздела регулярное расположение частиц нарушается.

Монокристаллы характеризуются анизотропией свойств. В поликристаллических телах анизотропия в большинстве случаев не наблюдается, однако с помощью специальной обработки могут быть получены текстурованные материалы с ориентированым расположением кристаллов.

Так как монокристаллы анизотропны, то при определении электрических, механических и других свойств необходимо указывать расположение кристаллографических плоскостей и направления в кристаллах. Для этого используют индексы Миллера.

Индексы Миллера

Пусть плоскость отсекает на осях координат отрезки ОА, ОВ и ОС (в единицах периода решетки). Рассчитаем обратные им величины H = 1/ОА, K = 1/ОВ, L = 1/ОС и определим наименьшие целые числа с таким же соотношением, как H: K: L = h: k: l. Целочисленные (hkl) называются индексами Миллера плоскости.

В кубических кристаллах индексы (100) относятся к плоскости, параллельной осям У и Z; индексы (010) - к плоскости, параллельной осям X и Z, а (001) - к плоскости, параллельной осям X и Y. В кристаллах с ортогональными осями эти плоскости вместе с тем перпендикулярны соответственно осям X , Y и Z.

Для обозначения направлений в кристалле применяют индексы в виде наименьших целых чисел, относящихся между собой как компо­ненты вектора, параллельного данному направлению. В отличие от обозначения плоскостей их пишут в квадратных скобках. В кубических кристаллах эти направления перпендикулярны плоскости с теми же индексами. Положительное направление оси X обозначают , положительное направление оси Y - , отрица­тельное направление оси Z - , диагональ куба - и т.д. Обозначения кристаллографических плоскостей и направлений приведены, на рис. 2.2.

Плоскости, отсекающие равные отрезки, но расположенные в других октантах, эквивалентны в кристаллографическом и физико-химическом отношениях. Они образуют совокупность эквивалентных плоскостей – {hkl} или систему плоскостей, у которых h, k, l могут быть записаны в любом порядке и с любым числом минусов перед индексами. Минус записывается над индексом.

Положение направления в пространственной решетке может быть легко определено координатами атома, ближайшего к началу координат и лежащего на данном направлении.

Совокупность эквивалентных направлений или система направлений обозначается , где h, k, l могут быть записаны в любом порядке и с любым числом минусов: <100> ‑ совокупность направлений, параллельных всем ребрам куба; {100} ‑ совокупность плоскостей, параллельных всем граням куба.

Рис. 2.2. Примеры обозначения кристаллографических

плоскостей и направлений в кубических кристаллах

с помощью индексов Миллера

Примеры решения задач

Пример 1. Определить индексы плоскости, отсекающей на осях решетки отрезки А = 1, В = 2, С = - 4.

Отношения величин, обратных отрезкам, 1/А: 1/В: 1/С = 1/1: 1/2: 1/(-4). Доводим это отношение до отношения трех целых чисел, умножая на общий знаменатель 4, дополнитель­ными множителями будут 4 и 2. 1/А: 1/В: 1/С = 4: 2:(- 1). Это и будут искомые h, k, l. Индексы плоскости (42 ).

Пример 2. Определить отрезки, которые отсекает на осях решетки плоскость (023).

Записываем величины, обратные индексам плоскости: 1/0, 1/2, 1/3. Умножаем на общий знаменатель, равный 6 (доводим отрезки до целых чисел). Отрезки, отсекаемые плоскостью на осях, будут равны А = , В = 3, С = 2. Эта плоскость будет параллельна оси х, так как А = .

Полиморфизм

Некоторые твердые вещества обладают способностью образовывать не одну, а две и более кристаллические структуры, устойчивые при различных температурах и давлениях. Такое свойство материалов называют полиморфизмом, а отвечающие им кристаллические структуры называют полиморфными формами или аллотропными модификациями вещества.

Модификацию, устойчивую при нормальной и более низкой температуре, принято обозначать буквой α ; модификации, устойчивые при более высоких температурах, обозначают соответственно буквами β , γ и т.д.

Полиморфизм широко распространен среди технических материалов и имеет важное значение для их обработки и эксплуатации.

Классическим примером полиморфизма является низкотемпературное пре­вращение белого олова (β -Sn) в серое (α -Sn), известное в технике как «оловянная чума».

Практический интерес представляет полиморфизм углерода - существование его в виде алмаза или графита. В обычных условиях графит является более устойчивой модификацией, чем алмаз. Однако при повышении давления устойчивость алмаза растет, а графита падает, и при достаточно высоких давлениях алмаз становится более устойчивым. Если при этом повысить температуру, чтобы увеличить подвижность атомов, то графит можно перевести в алмаз. На этом принци­пе основано получение искусственных алмазов. В Советском Союзе их промышленное производство началось в 1961 г. Синтез проводят под давлением порядка 10 10 Па при температуре на уровне 2000 °С. Получаемые таким образом искусственные алмазы имеют более высокую прочность и твердость, нежели природные кристаллы.

2.1.5. Изоморфизм

Изоморфизм – это свойство химически и геометрически близких атомов и ионов и их сочетаний замещать друг друга в кристаллической решетке, образуя кристаллы переменного состава.

Изоморфные кристаллы кремния и германия образуют непрерывный ряд твердых растворов замещения. Оба этих вещества кристаллизуются в структуре алмаза, период решетки германия а = 0,565 нм, кремния а = 0,542 нм, различие в периодах составляет менее 4 %, поэтому возможно образование образование твердых растворов замещения с неограниченной растворимостью, в которых атомы германия и кремния располагаются в узлах алмазной решетки.

Плотность, период решетки, твердость в изоморфном ряду смешанных кристаллов Si – Ge меняются линейно. Подбором различных изоморфных составов удается варьировать области рабочих температур и электрофизические параметры для этих и других твердых растворов полупроводниковых соединений.


Похожая информация.


1.4. Основные типы кристаллических структур

Точечное расположение атомов в пространственных решетках является упрощенным и непригодным для изучения кристаллических структур, когда определяется расстояние между ближайшими атомами или ионами. Однако физические свойства кристаллических структур зависят от химической природы веществ, размеров атомов (ионов) и сил взаимодействия между ними. Поэтому в дальнейшем будем считать, что атомы или ионы имеют форму шара и характеризуются эффективным радиусом , понимая под ним радиус сферы их влияния, равный половине расстояния между двумя ближайшими соседними однотипными атомами или ионами. В кубической решетке эффективный атомный радиус равен а 0 /2.

Эффективный радиус имеет различные собственные значения в каждой определенной структуре и зависит от природы и числа соседних атомов. Атомные радиусы разных элементов можно сравнивать только тогда, когда они образуют кристаллы с одинаковым координационным числом. Координационным числом z данного атома (иона) называют число окружающих его ближайших однотипных атомов (ионов) в кристаллической структуре. Мысленно соединив прямыми линиями центры соседних частиц друг с другом, получим

координационный многогранник ; при этом атом (ион), для которого строится такой многогранник, находится в его центре.

Координационное число и отношение эффективных радиусов частиц определенным образом связаны друг с другом: чем меньше различие в размерах частиц, тем больше z .

В зависимости от кристаллической структуры (типа решетки), z может изменяться от 3 до 12. Как будет показано ниже, в структуре алмаза z = 4, в каменной соли z = 6 (каждый ион натрия окружен шестью ионами хлора). Для металлов характерно координационное число z = 12, для кристаллических полупроводников z = 4 или z = 6. Для жидкостей координационное число определяется статистически как среднее число ближайших соседей любого атома.

Координационное число связано с плотностью упаковки атомов в кристаллической структуре. Относительная плотность упаковки

это отношение объема, занимаемого атомами, к общему объему структуры. Чем больше координационное число, тем выше относительная плотность упаковки.

Раздел 1. Основныеположен ия физико химическо й кристаллографии

Кристаллическая решетка стреми тся обладать минимумом свободной энергии. Это возмож но только в том случае, когда каждая частица будет взаимодействовать с максимально возм ожным числом других частиц. Иначе говоря, координационное число должно быть максимальны м. Стремление к плотней шей упаковке свойственно всем типам кристаллических структур.

Рассмотрим плоскую структуру, состоя щую из атомов одной природы, которые касаются друг друга и заполняют бóльшую часть пространства. В этом случае возможе н только один способ плотнейшей упаковки атомов, прилегающих друг к другу: вокруг центрально-

центры тяжести приходятся н а пустоты первого слоя. Это хорошо видно на правом изображении на рис. 1.10, а (вид сверху), где проекции атомов второго слоя окрашены в бледно-серый цвет. Атомы второго слоя образуют базисный треугольник (показан сплошной линией) с вершиной, направленной вверх.

Рис. 1.10. Последовательность слоев при упаковке шаров одина кового размера в структурах двух типов: a – АВАВ... при гексагональной плотнейшей упаковке (ГПУ); б – АВСАВС... пр и кубической плотнейшей у паковке (К ПУ), дающей гранецентрированную кубическую (ГЦК) решетку. Для нагляд ности третий и четверт ый слои показаны не полностью заполн енными

Глава 1. Элементы кристаллофизики

Атомы третьего слоя могут располагаться двумя способами. Если центры тяжести атомов третьего слоя находятся над центрами тяжести атомов первого слоя, то повторится укладка первого слоя (рис. 1.10, а ). Результирующая структура представляет собой гексагональную плотнейшую упаковку (ГПУ). Ее можно представить в виде последовательности слоев АВАВАВАВ … в направлении оси Z .

Если атомы третьего слоя C (показаны темно-серым цветом справа на рис. 1.10, б ) расположены над другими пустотами первого слоя и образуют базисный треугольник, развернутый относительно слоя B на 180º (показан пунктиром), а четвертый слой идентичен первому, то результирующая структура представляет собой кубическую плотнейшую упаковку (КПУ), которая соответствует гранецентрированной кубической структуре (ГЦК) с последовательностью слоев АВСАВСАВСАВС … в направлении оси Z .

Для плотнейших упаковок z = 12. Это хорошо видно на примере центрального шара в слое В : его ближайшее окружение составляют шесть шаров слоя А и по три шара ниже и выше его в слоях В

(рис. 1.10, a ).

Кроме координационного числа z различные структуры характеризуются также плотностью упаковки, вводимой как отношение объема V ат , занимаемого атомами, к объему всей ячейки Браве V яч . Атомы представляются твердыми шарами радиусом r , поэтому V ат = n (4π/3)r 3 , где n – число атомов в ячейке.

Объем кубической ячейки V яч = a 0 3 , где а 0 – период решетки. Для ячейки ГПУ с площадью шестиугольного основания S = 3a 0 2 2 3

и высотой c = 2a 0 23 получаем V яч = 3a 0 3 2 .

Соответствующие параметры кристаллических структур – примитивной кубической (ПК), объемно-центрированной кубической (ОЦК), гранецентрированной кубической (ГЦК), гексагональной плотноупакованной (ГПУ) – приведены в табл. 1.2. Радиусы атомов записаны с учетом того, что они соприкасаются вдоль ребер куба в ПК-структуре (2r = а 0 ), вдоль пространственных диагоналей (4r = a 0 3) в ОЦК-структуре и вдоль диагоналей граней (4r = a 0 2)

в ГЦК-структуре.

Таким образом, в структурах с плотнейшей упаковкой (ГЦК и ГПУ), имеющих z = 12, объем ячейки на 74 % занят атомами. C уменьшением координационного числа до 8 и 6 плотность упаковки снижается соответственно до 68 (ОЦК) и 52 % (ПК).

Таблица 1.2

Параметры кубических и гексагональных кристаллов

Параметры кристалла

Координационное число z

Число атомов n в ячейке

Радиус атома r

а 0 /2

a 2 4

а 0 /2

Объем одного атома, V ат /n

a 0 3 π 6

a3 π

a 3 π 2 24

π a 0 3 6

Плотность упаковки,

π 3 8 = 0, 6

π 2 6 = 0,74

π 2 6 = 0,74

V ат/ V яч

Уже отмечалось, что при кристаллизации вещества система стремится обеспечить минимум свободной энергии. Одним из факторов, снижающих потенциальную энергию взаимодействия между частицами, является их максимальное сближение и установление взаимной связи с возможно бóльшим числом частиц, т. е. стремление к более плотной упаковке с наибольшим координационным числом.

Тенденция к реализации плотнейшей упаковки свойственна всем типам структур, но сильнее всего она выражена в металлических, ионных и молекулярных кристаллах. В них связи ненаправленные или слабонаправленные (см. гл. 2), так что для атомов, ионов

и молекул вполне приемлемой является модель твердых несжимаемых шаров.

Трансляционными решетками Браве, приведенными на рис. 1.3

и в табл. 1.1, не исчерпываются все возможные варианты построения кристаллических структур, в первую очередь для химических соединений. Дело в том, что периодическое повторение ячейки Браве дает трансляционную решетку, состоящую только из частиц (молекул, атомов, ионов) одного сорта. Поэтому структуру сложного соединения можно построить комбинацией решеток Браве, определенным образом вставленных одна в другую. Так, полупроводниковые кристаллы используют направленную ковалентную (неполярную или полярную) связь, которая обычно реализуется путем комбинации, по крайней мере, двух решеток, по отдельности достаточно плотно упакованных, но в итоге обеспечивающих малые координационные числа «суммарной» решетки (вплоть до z = 4).

Существуют группы веществ, характеризующиеся идентичным пространственным расположением атомов и отличающиеся друг от друга только параметрами (но не типом) кристаллической решетки.

Поэтому их структуру можно описать с помощ ью одной пространственной модели (одним структурным типом ) с указанием конкретных значений параметров решетки для каждого вещ ества. Таким образом, кристаллы различных вещес тв относятся к ограниченному числу структурных типов.

Наиболее часто встречаются следующие типы структур:

в металлических кристаллах :

структура вольфрама (ОЦ К-решетка); структура меди (ГЦК-ре шетка), структура магния (ГПУ-решетка);

в диэлектрических кристаллах :

структура хлористого натрия (сдвоенная Г ЦК-решетка); структура хлористого цезия (сдвоенная ПК-решетка);

в полупроводни ковых кристаллах:

структура алмаза (сдвоенная ГЦК-решетка); структура сфалер ита (сдвоенная Г ЦК-решетка); структура вюрцита (сдвоенная ГП У-решетка).

Рассмотрим кратко особенности и реализуемость перечисленных выше структур и соответствующие им решетки Браве.

1.4.1. Метал лические кристаллы

Структура вольфрама (рис. 1.1 1, а ). Объемно-центрированная кубическая решетка не является структурой с плотнейш ей упаковкой, имеет относительную плотность упаковки 0,6 8 и координационное число z = 8. Наиболее плотно упакованы плоско сти {11 1}.

Рис. 1.11. Типы кубических решеток: а – объемно-центрированная кубиче ская (ОЦК); б – простая куб ическая

Раздел 1. Основные положения физико химической кристаллографии

Помимо вольфрама W, ОЦК-решетку имеют все щелочные и щелочно-земельные металлы, а также большинство тугоплавких металлов: хром Cr, железо Fe, молибден Mo, цирконий Zr, тантал Ta, ниобий Nb и др. Последнее находит следующее объяснение. В ячейке ОЦК для центрального атома ближайшими соседями являются атомы в вершинах куба (z = 8). Они отстоят друг от друга на расстоянии

шесть центральных атомов в соседних ячейках (вторая координационная сфера), что практически увеличивает координационное число до z 14. Это дает суммарный выигрыш энергии, компенсирующий отрицательный вклад от небольшого увеличения средних расстояний между атомами по сравнению с ГЦК-решеткой, где атомы находятся на расстоянии d = a 0 ( 2) 2 = 0,707a 0 . В результате повышается проч-

ность кристаллов, проявляющаяся в их высокой температуре плавления, достигающей для вольфрама 3 422 ºС. Для сравнения: простая кубическая структура (рис. 1.11, б ) с z = 8 имеет неплотную упаковку и встречается только у полония Ро.

Структура меди (ГЦК-решетка), показанная на рис. 1.12, а , относится к плотноупакованным структурам, имеет относительную плотность упаковки 0,74 и координационное число z = 12. Кроме меди Cu она характерна для многих металлов, таких как золото Au, серебро Ag, платина Pt, никель Ni, алюминий Al, свинец Pb, палладий Pd, торий Th и др.

Рис. 1.12. Структуры плотноупакованных кристаллических решеток: а – гранецентрированная кубическая (структура меди); б – гексагональная плотноупакованная (структура магния)

Глава 1.Элементы кристаллофизики

Перечисленные металлы сравнительно мягкие и пластичные. Дело в том, что в структурах типа меди тетраэдрические и октаэдрические пустоты в ГЦК-решетке не заполнены другими частицами. Это допускает, в силу ненаправленности связей между атомами, их смещение по так называемым плоскостя м скольж ения . В решетке ГЦК таковыми являются плоскости наибольшей упаковки {111}, одна из которых изображена заштрихованной на рис. 1.12, а .

Структура магния (ГПУ-решетка), показанная на рис. 1.12, б , характерна не только для магния Mg, но и для кадмия Cd, цинка Zn, титана Ti, таллия Tl, бериллия Be и др., а также для большинства редкоземельных элементов. В отличие от ПК-решетки, ГПУ-решетка на рис. 1 .12, б имеет слой В (заштрихованный), расположенный посередине между базисными слоями А на фиксированном расстоянии

с 2 = a 0 2 3 (с наблюдаемым отклонением вплоть до 10 % для неко-

торых металлов). Атомы в слоях В размещаются над центрами треугольников в базисной плоскости (0001) с плотнейшей упаковкой.

1.4.2. Диэлектрические кристаллы

Структура хлористого натрия (рис. 1.13, а ) может быть опи-

сана как две гранецентрированные кубические решетки (структурный тип меди), сдвинутые на полпериода решетки (a 0 /2) вдоль любого из ребер <100>.

Крупные анионы хлора Cl− занимают узлы ГЦК-ячейки и образуют кубическую плотнейшую упаковку, в которой катионы натрия Na+ , имея меньший размер, заполняют только октаэдрические пустоты. Иными словами, в структуре NaCl каждый катион окружен четырьмя анионами в плоскости (100) и двумя ионами в перпендикулярной плоскости, которые находятся на равном расстоянии от катиона. В результате имеет место октаэдрическая координация. Это в равной степени справедливо и для анионов. Поэтому отношение координационных чисел подрешеток равно 6:6.

Структура хлористого цезия CsCl (сдвоенная ПК-решетка),

показанная на рис. 1.13, б , состоит из двух примитивных кубических решеток, сдвинутых на половину объемной диагонали. Дело в том, что ионы цезия больше ионов натрия и не могут поместиться в октаэдрических (и тем более в тетраэдрических) пустотах решетки хлора, если бы она была типа ГЦК, как в структуре NaCl. В структуре CsCl каждый ион цезия окружен восемью ионами хлора и наоборот.

В структуры этого типа кристаллизуются и другие галогениды, например Cs (Br, I), Rb (Br, I), Tl (Br, Cl), полупроводниковые соединения типа AIV BVI и многие сплавы редкоземельных элементов. Подобные структуры наблюдаются и в гетерополярных ионных соединениях.

1.4.3. Полупроводниковые кристаллы

Структура алмаза представляет собой сочетание двух ГЦКрешеток, вставленных одна в другую и сдвинутых по пространственной диагонали на четверть длины (рис. 1.14, а ). Каждый атом окружен четырьмя, которые расположены в вершинах тетраэдра (жирные линии на рис. 1.14, а ). Все связи в структуре алмаза равноправны, направлены по <111> и составляют друг с другом углы 109º 28" . Решетка алмаза относится к неплотноупакованным структурам с координационным числом z = 4. В структуре алмаза кристаллизуются германий, кремний, серое олово. Кроме алмаза в структуре этого типа кристаллизуются также элементарные полупроводники – кремний Si, германий Ge, серое олово Sn.

Структура сфалерита (сдвоенная ГЦК-решетка). Если две вспомогательные гранецентрированные кубические решетки образованы разными атомами, то возникает новая структура, называемая структурой сфалерита ZnS или цинковой обманки (рис. 1.14, б ).

Глава 1.Элем енты кристаллофизи ки

Рис. 1 .14. Структуры алм аза (а ), с фалерита (б ), вюрцита (в ). Жирными линиями выделены т етраэдрические связи

Такой структурой обладают многие полупроводниковые соединения типа AIII BV (арсенид галлия GaA s, фосфид галлия GaP, фосфид индия InP, антимонид индия I nSb и др.) и типа AII BVI (селенид цинка ZnSe, теллури д цинка ZnTe, сульфид кадмия CdS, селенид кадмия

Структура сфалерита идентична структуре алмаза с тетраэдрическим окружением атомов (рис. 1.14, а ), только одна ГЦКподрешетка занята ат омами галлия Ga, а другая – атомами мышьяка As. В ячейке GaAs отсутствует центр симметрии, т. е. структура полярна по четырем направления м < 111 > . Наблюдается различие между плотноупак ованными плоскостями 111) и (111 ): если одна из них содержит ато мы Ga, то другая – атомы As. Это обусловливает анизотропию свойств поверхности (микротвердость, адсорбция, химическое травление и т. п.).

В структуре сфалерита треугольные основания тетраэдров любого слоя ориентированы так же, как и основания тетраэдров предыдущего слоя.

Структура вюрцита (с двоенная ГПУ-решетка), изображ енная на рис. 1.14, в , характерна для гексагональной модификации сульфида цинка. Такой структурой обладают бл изкие к ZnS полупроводники, например сульфид кадмия CdS и селенид кадмия CdSe. Для большинства соедине ний AII B VI хара ктерен ф азовый переход «сфалерит – вюрцит». Структура вюрцита реализуется, если атом неметалла имеет малые размеры и большую электроотр ицательность.

На рис. 1.14, в приведена примитивная ячейка вюрцита для ZnS в форме прямой призм ы с ромбом в основании и углом 120° в центре шестиугольника, образованного тремя такими призмами (две из которых показаны на рису нке).

koreada.ru - Про автомобили - Информационный портал