Электрон (элементарная частица). Электрон. Образование и строение электрона. Магнитный монополь электрона Открыл электроны измерил их заряд и массу

ФИЗИЧЕСКИЕ ОСНОВЫ РАБОТЫ ИОННЫХ

И ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

1.1. Свойства электрона

Электрическое поле в электронных приборах ускоряет или тор-

мозит движение электронов. Пусть на электрон е , находящийся в

электрическомполеснапряжённостьюЕ , действуетсилаF (рис. 1.1)

F = − eE,

направленная против силы поля.

Согласно второму закону Ньютона, сила F равна произведению

массы электрона m на ускорение a , сообщаемое электрону силой F

в поле с напряжённостью Е :

F = ma.

Из (1.1) и (1.2) ускорение элек-

a = E e ,

из уравнения (1.3) видно, что c из-

менениемнапряжённостиэлектри-

Рис. 1.1. Электрон в однородном

ческого поля изменяется ускоре-

электрическом поле

ниеэлектрона. Крометого, присо-

впадениисилыполяснаправлениемначальнойскоростиv 0

электрон

движется ускоренно и приобретает наибольшую скорость и кинети-

ческую энергию в конце своего пути.

Скорость v электрона найдём исходя из известных положений

физики. Во-первых, работа сил поля по перемещению в нём элект-

рона из точки А в точку Б представляет собой произведение заряда

электрона е на разность потенциалов этих точек:

W e = (− e )(U А − U Б ).

Так как U Б > U A , то

U А − U Б = − U .

Следовательно, работа

We = (e)(− U ) = eU.

Во-вторых, по закону сохранения энергии, работа W e , затрачен-

ная полем на перемещение электрона, равна приращению кинети-

ческойэнергииэлектрона, перемещающегосявэлектрическомполе:

W = m (v 2 − v 2 ) / 2 .

Принимая начальную скорость v 0 = 0, из (5) находим значение

конечной скорости электрона

2 W e =

2 U e .

Скоростьэлектронавэлектронныхприборахзначительномень-

ше скорости света, поэтому соотношение величин e /m ≈ e /m 0

v ≈ 600

Из (1.9) видно, что скорость движения электрона в электриче-

ском поле (км/с) зависит только от разности потенциалов между

начальной и конечной точками пути, пройденного электроном, и

не зависит от формы пути. Иногда скорость электрона измеряют в

вольтах. Например: скоростьэлектрона100 В. Этозначит, чтоэлек-

тронприобрёлтакуюскорость, пройдяразностьпотенциалов100 В.

Если электрон начинает своё движение из состояния покоя, он

будет двигаться равноускоренно, прямолинейно против силовых

линий электрического поля, поглощая энергию из поля. Электри-

ческое поле для электрона является ускоряющим.

Если начальная скорость совпадает с направлением силовых

линийэлектрическогополя, такоеполедляэлектронаявляетсятор-

мозящим. Скорость электрона будет уменьшаться, энергия элект-

рона также будет уменьшаться (будет возвращаться полю). Если

позволят размеры поля, электрон остановится, а затем начнёт двигаться против силовых линий этого поля.

Еслиначальнаяскоростьнаправленапротивсиловыхлинийэлектрического поля, такое поле для электрона является ускоряющим. Положительныезарядыэлектрическоеполеперемещаетпонаправлению силовых линий поля.

1.2. Виды электронной эмиссии

Явление испускания электронов с поверхности твёрдого тела называют электронной эмиссией, а сам источник электронов - эмиттером. В зависимости от способов внешнего энергетического воздействиянаэлектроны, вызывающихихвыходизэмиттера, различают несколько видов электронной эмиссии.

Термоэлектронная эмиссия возникает в результате нагрева эмиттера. С повышением температуры возникают тепловые колебания решёткитвёрдоготела. Засчётэтойэнергиитепловоговозбуждениячасть электроноввыходитизэмиттера, образуятокэмиссии. Чемвышетемпература эмиттера, тем больше электронов приобретает такую энергию, вследствие чего возрастает ток термоэлектронной эмиссии. Минимальная температура, при которой появляется ток эмиссии, называется критической. Она зависит от материала эмиттера.

Вторичная электронная эмиссия - испускание вторичных элек-

тронов с поверхности эмиттера при облучении его потоком первичных электронов. Первичный электронный поток, падающий на вторичный эмиттер, частично отражается от его поверхности, а частично проникает вглубь. Здесь первичные электроны сталкиваютсясэлектронамикристаллическойрешёткиэмиттера, отдаютим часть своей энергии, возбуждая их. Часть возбуждённых электронов выходит во внешнюю среду, эти электроны являются вторичными.

Электростатическая электронная эмиссия (автоэлектронная)

возникает с поверхности твёрдого или жидкого тела под действием внешнего ускоряющего электрического поля с высокой напряжённостью (107 В/м). Чем больше напряжённость поля, тем больше ток автоэлектронной эмиссии.

Фотоэлектронная эмиссия возникает при облучении эмиттера световым потоком. Эффективность данного вида эмиссии зависит от длины волны (обратная зависимость) и от величины светового потока (зависимость прямая).

Удельный заряд электрона (т. е. отношение ) был впервые измерен Томсоном в 1897 г. с помощью разрядной трубки, изображенной на рис. 74.1. Выходящий из отверстия в аноде А электронный пучок (катодные лучи; см. § 85) проходил между пластинами плоского конденсатора и попадал на флуоресцирующий экран, создавая на нем светящееся пятно.

Подавая напряжение на пластины конденсатора, можно было воздействовать на пучок практически однородным электрическим полем. Трубка помещалась между полюсами электромагнита, с помощью которого можно было создавать на том же участке пути электронов перпендикулярное к электрическому однородное магнитное поле (область этого поля обведена на рис. 74.1 пунктирной окружностью). При выключенных полях пучок попадал на экран в точке О. Каждое из полей в отдельности вызывало смещение пучка в вертикальном направлении. Величины смещений определяются полученными в предыдущем параграфе формулами (73.3) и (73.4).

Включив магнитное поле и измерив вызванное им смещение следа пучка

Томсон включал также электрическое поле и подбирал его значение так, чтобы пучок снова попадал в точку О. В этом случае электрическое и магнитное поля действовали на электроны пучка одновременно с одинаковыми по величине, но противоположно направленными силами. При этом выполнялось условие

Решая совместно уравнения (74.1) и (74.2), Томсон вычислял .

Буш применил для определения удельного заряда электронов метод магнитной фокусировки. Суть этого метода заключается в следующем. Допустим, что в однородном магнитном поле вылетает из некоторой точки слегка расходящийся симметричный относительно направления поля пучок электронов, имеющих одинаковую по величине скорость v. Направления, по которым вылетают электроны, образуют с направлением В небольшие углы а. В § 72 было выяснено, что электроны движутся в этом случае по спиральным траекториям, совершая за одинаковое время

полный оборот и смещаясь вдоль направления поля на расстояние , равное

Вследствие малости угла а расстояния (74.3) для разных электронов оказываются практически одинаковыми и равными (для малых углов ). Следовательно, слегка расходящийся пучок сфокусируется в точке, отстоящей от точки вылета электронов на расстояние

В опыте Буша электроны, испущенные раскаленным катодом К (рис. 74.2), ускоряются, проходя разность потенциалов U, приложенную между катодом К и анодом А. В результате они приобретают скорость и, значение которой может быть найдено из соотношения

Вылетев затем из отверстия в аноде, электроны образуют узкий пучок, направленный вдоль оси эвакуированной трубки, вставленной внутрь соленоида. На входе в соленоид помещается конденсатор, на который подается переменное напряжение. Поле, создаваемое конденсатором, отклоняет электроны пучка от оси прибора на небольшие изменяющиеся со временем углы а. Это приводит к «завихрению» пучка - электроны начинают двигаться по различным спиральным траекториям. На выходе из соленоида ставится флуоресцирующий экран. Если подобрать магнитную индукцию В так, чтобы расстояние Г от конденсатора до экрана удовлетворяло условию

(l - шаг спирали, - целое число), то точка пересечения траекторий электронов попадет на экран - электронный пучок окажется сфокусированным в этой точке и возбудит на экране резкое светящееся пятно. Если условие (74.6) не соблюдается, светящееся пятно на экране будет размытым. Решив совместно уравнения (74.4), (74.5) и (74.6), можно найти

Наиболее точное значение удельного заряда электрона, установленное с учетом результатов, полученных разными методами, равно

Величина (74.7) дает отношение заряда электрона к его массе покоя . В опытах Томсона, Буша и других аналогичных опытах определялось отношение заряда к релятивистской массе, равной

В опытах Томсона скорость электронов составляла примерно 0,1 с. При такой скорости релятивистская масса превышает массу покоя на 0,5%. В последующих опытах скорость электронов достигала очень больших значений. Во всех случаях было обнаружено уменьшение измеряемых значений с ростом v, происходившее в точном соответствии с формулой (74.8).

Заряд электрона был определен с большой точностью Милликеном в 1909 г. В закрытое пространство между горизонтально расположенными пластинами конденсатора (рис. 74.3) Милликен вводил мельчайшие капельки масла. При разбрызгивании капельки электризовались, и их можно было устанавливать неподвижно, подбирая величину и знак напряжения на конденсаторе.

Равновесие наступало при условии

здесь - заряд капельки, Р - результирующая силы тяжести и архимедовой силы, равная

(74.10)

( - плотность капельки, - ее радиус, - плотность воздуха).

Из формул (74.9) и (74.10), зная , можно было найти . Для определения радиуса измерялась скорость равномерного падения капельки в отсутствие поля. Равномерное движение капельки устанавливается при условии, что сила Р уравновешивается силой сопротивления (см. формулу (78.1) 1-го тома; - вязкость воздуха):

(74.11)

Движение капельки наблюдалось с помощью микроскопа. Для измерения определялось время, за которое капелька проходила расстояние между двумя нитями, видимыми в поле зрения микроскопа.

Точно зафиксировать равновесие капельки очень трудно. Поэтому вместо поля, отвечающего условию (74.9), включалось такое поле, под действием которого капелька начинала двигаться с небольшой скоростью вверх. Установившаяся скорость подъема определяется из условия, что сила Р и сила в сумме уравновешивают силу

Исключив из уравнения (74.10), (74.11) и (74.12) Р и , получим выражение для

(в эту формулу Милликен вносил поправку, учитывающую, что размеры капелек были сравнимы с длиной свободного пробега молекул воздуха).

Итак, измерив скорость свободного падения капельки и скорость ее подъема известном электрическом поле , можно было найти заряд капельки е. Произведя измерение скорости при некотором значении заряда , Милликен вызывал ионизацию воздуха облучая пространство между пластинами рентгеновскими лучами. Отдельные ионы, прилипая к капельке, изменяли ее заряд, в результате чего скорость также менялась. После измерения нового значения скорости снова облучалось пространство между пластинами и т. д.

Измеренные Милликеном изменения заряда капельки и сам заряд каждый раз получались целыми кратными одной и той же величины . Тем самым была экспериментально доказана дискретность электрического заряда, т. е. тот факт, что всякий заряд слагается из элементарных зарядов одинаковой величины.

Значение элементарного заряда, установленное с учетом измерений Милликена и данных, полученных другими методами, равно

В физике твёрдого тела, эффективной массой частицы называется динамическая масса, которая появляется при движении частицы в периодическом потенциале кристалла. Можно показать, что электроны и дырки в кристалле реагируют на электрическое поле так, как если бы они свободно двигались в вакууме, но с некой эффективной массой, которую обычно определяют в единицах массы покоя электрона me (9.11×10−31 кг). Она отлична от массы покоя электрона. Эффективная масса определяется из аналогии со вторым законом Ньютона помощью квантовой механики можно показать, что для электрона во внешнем электрическом полеE: де a - ускорение, - постоянная Планка, k - волновой вектор, который определяется из импульса как k =, ε(k) - закон дисперсии, который связывает энергию с волновым вектором k. В присутствии электрического поля на электрон действует сила, где заряд обозначен q. Отсюда можно получить выражение для эффективной массы m * :

Для свободной частицы закон дисперсии квадратичен, и таким образом эффективная масса является постоянной и равной массе покоя. В кристалле ситуация более сложна и закон дисперсии отличается от квадратичного. В этом случае только в экстремумах кривой закона дисперсии, там где можно аппроксимировать параболой можно использовать понятие массы. Эффективная масса зависит от направления в кристалле и является в общем случае тензором. Те́нзор эффекти́вной ма́ссы - термин физики твёрдого тела, характеризующий сложную природу эффективной массы квазичастицы (электрона, дырки) в твёрдом теле. Тензорная природа эффективной массы иллюстрирует тот факт, что в кристаллической решётке электрон движется не как частица с массой покоя, а как квазичастица, у которой масса зависит от направления движения относительно кристаллографических осей кристалла. Эффективная масса вводится, когда имеется параболический закон дисперсии, иначе масса начинает зависеть от энергии. В связи с этим возможна отрицательная эффективная масса. По определению эффективную массу находят из закона дисперсии Где- волновой вектор,- символ Кронекера,- постоянная Планка. Электрон. Электро́н - стабильная, отрицательно заряженная элементарная частица, одна из основных структурных единиц вещества. Является фермионом (т.е. имеет полуцелый спин). Относится к лептонам (единственная стабильная частица среди заряженных лептонов). Из электронов состоят электронные оболочки атомов, где их число и положение определяет почти все химические свойства веществ. Движение свободных электронов обусловливает такие явления, как электрический ток в проводниках и вакууме. Электрон как квазичастица. Если электрон находится в периодическом потенциале, его движение рассматривается как движение квазичастицы. Его состояния описываются квазиволновым вектором. Основной динамической характеристикой в случае квадратичного закона дисперсии является эффективная масса, которая может значительно отличаться от массы свободного электрона и в общем случае является тензором. Свойства Заряд электрона неделим и равен −1,602176487(40)×10−19 Клкг - масса электрона.Кл - заряд электрона.Кл/кг - удельный заряд электрона.спин электрона в единицахСогласно современным представлениям физики элементарных частиц, электрон неделим и бесструктурен (как минимум до расстояний 10−17 см). Электрон участвует в слабом, электромагнитном и гравитационном взаимодействиях. Он принадлежит к группе лептонов и является (вместе со своей античастицей, позитроном) легчайшим из заряженных лептонов. До открытия массы нейтрино электрон считался наиболее лёгкой из массивных частиц - его масса примерно в 1836 раз меньше массы протона. Спин электрона равен 1/2, и, таким образом, электрон относится к фермионам. Как и любая заряженная частица со спином, электрон обладает магнитным моментом, причем магнитный момент делится на нормальную часть и аномальный магнитный момент. Иногда к электронам относят как собственно электроны, так и позитроны (например, рассматривая их как общее электрон-позитронное поле, решение уравнения Дирака). В этом случае отрицательно заряженный электрон называют негатроном, положительно заряженный - позитроном. Находясь в периодическом потенциале кристалла, электрон рассматривается как квазичастица, эффективная масса которой может значительно отличаться от массы электрона. Свободный электрон не может поглотить фотон, хотя и может рассеять его (см. эффект Комптона). Дырка. Ды́рка - квазичастица, носитель положительного заряда, равного элементарному заряду в полупроводниках. Определение по ГОСТ 22622-77: Незаполненная валентная связь, которая проявляет себя как положительный заряд, численно равный заряду электрона. Понятие дырки вводится в зонной теории для описания электронных явлений в не полностью заполненной электронами валентной зоне. В электронном спектре валентной зоны часто возникает несколько зон, различающихся величиной эффективной массы и энергетическим положением (зоны легких и тяжёлых дырок, зона спин-орбитально отщепленных дырок).

Электрон (элементарная частица)

Данная статья была написана Владимиром Горунович для сайта "Викизнание", под названием "Электрон в полевой теории", помещена на этот сайт в целях защиты информации от вандалов, а затем дополнена на этом сайте.

Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику,
  • Законы сохранения - фундаментальные законы физики.

В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку. В итоге физика скатывалась в мир математических сказок.

    1 Радиус электрона
    2 Электрическое поле электрона
    3 Магнитный момент электрона
    4 Масса покоя электрона
    5 Новая физика: Электрон (элементарная частица) - итог

Электрон (англ. Electron) - легчайшая элементарная частица, обладающая электрическим зарядом. Квантовое число L=1/2 (спин = 1/2) - группа лептоны, подгруппа электрона, электрический заряд -e (систематизация по полевой теории элементарных частиц). Стабильность электрона обусловлена наличием электрического заряда, при отсутствии которого электрон бы распадался аналогично мюонному нейтрино.

Согласно полевой теории элементарных частиц, электрон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей.

Структура электромагнитного поля электрона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле)

Энергетический баланс (процент от всей внутренней энергии):

  • постоянное электрическое поле (E) - 0,75%,
  • постоянное магнитное поле (H) - 1,8%,
  • переменное электромагнитное поле - 97,45%.

Этим объясняются ярко выраженные волновые свойства электрона и его нежелание участвовать в ядерных взаимодействиях. Структура электрона приведена на рисунке.

1 Радиус электрона

Радиус электрона (расстояние от центра частицы до места в котором достигается максимальная плотность массы) определяемый по формуле:

равен 1,98 ∙10 -11 см.

Занимаемого электроном, определяемый по формуле:

равен 3,96 ∙10 -11 см. К величине r 0~ добавился еще радиус кольцевой области, занимаемой переменным электромагнитным полем электрона. Необходимо помнить, что часть величины массы покоя, сосредоточенной в постоянных (электрическом и магнитном) полях электрона находится за пределами данной области, в соответствии с законами электродинамики.

Электрон больше любого атомного ядра, поэтому не может присутствовать в атомных ядрах, а рождается в процессе распада нейтрона, также как позитрон рождается в процессе распада в ядре протона.

Утверждения о том, что радиус электрона порядка 10 -16 см бездоказательные и противоречат классической электродинамике. При таких линейных размерах электрон должен быть тяжелее протона.

2 Электрическое поле электрона

Электрическое поле электрона состоит из двух областей: внешней области с отрицательным зарядом и внутренней области с положительным зарядом. Размер внутренней области определяется радиусом электрона. Разность зарядов внешней и внутренней областей определяет суммарный электрический заряд электрона -e. В основе его квантования лежат геометрия и строение элементарных частиц.

электрического поля электрона в точке (А) в дальней зоне (r > > r e) точно, в системе СИ равен:

электрического поля электрона в дальней зоне (r > > r e) точно, в системе СИ равна:

где n = r/|r| - единичный вектор из центра электрона в направлении точки наблюдения (А), r - расстояние от центра электрона до точки наблюдения, e - элементарный электрический заряд, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, r e =Lħ/(m 0~ c) - радиус электрона в полевой теории, L - главное квантовое число электрона в полевой теории, ħ - постоянная Планка, m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося электрона, c - скорость света. (В системе СГС отсутствует множитель .)

Данные математические выражения верны для дальней зоны электрического поля электрона: (r>>r e), а голословные утверждения что "электрическое поле электрона остается кулоновским вплоть до расстояний 10 -16 см" не имеет ничего общего с действительностью - это одна из сказок, противоречащая классической электродинамике.

Согласно полевой теории элементарных частиц, постоянное электрическое поле элементарных частиц с квантовым числом L>0, как заряженных, так и нейтральных, создается постоянной компонентой электромагнитного поля соответствующей элементарной частицы. А поле электрического заряда возникает в результате наличия асимметрии между внешней и внутренней полусферами, генерирующими электрические поля противоположных знаков. Для заряженных элементарных частиц в дальней зоне генерируется поле элементарного электрического заряда, а знак электрического заряда определяется знаком электрического поля, генерируемого внешней полусферой.В ближней зоне данное поле обладает сложной структурой и является дипольным, но дипольным моментом оно не обладает. Для приближенного описания данного поля как системы точечных зарядов потребуется не менее 6 "кварков"внутри электрона - лучше если взять 8 "кварков". Понятное дело, что это выходит за рамки стандартной модели.

У электрона, как и у любой другой заряженной элементарной частицы, можно выделить два электрических заряда и соответственно два электрических радиуса:

  • электрический радиус внешнего постоянного электрического поля (заряда -1.25e) - r q- = 3.66 10 -11 см.
  • электрический радиус внутреннего постоянного электрического поля (заряда +0.25e) - r q+ = 3 10 -12 см.

Данные характеристики электрического поля электрона соответствуют распределению 1 полевой теории элементарных частиц. Физика пока экспериментально не установила точность данного распределения, и какое распределение наиболее точно соответствует реальной структуре постоянного электрического поля электрона в ближней зоне.

Электрический радиус указывает среднее местонахождение равномерно распределенного по окружности электрического заряда, создающего аналогичное электрическое поле. Оба электрических заряда лежат в одной плоскости (плоскости вращения переменного электромагнитного поля элементарной частицы) и имеют общий центр, совпадающий с центром вращения переменного электромагнитного поля элементарной частицы.

Напряженность E электрического поля электрона в ближней зоне (r ~ r e), в системе СИ, как векторная сумма, приблизительно равна:

где n - =r - /r - единичный вектор из ближней (1) или дальней (2) точки заряда q - электрона в направлении точки наблюдения (А), n + =r + /r - единичный вектор из ближней (1) или дальней (2) точки заряда q + электрона в направлении точки наблюдения (А), r - расстояние от центра электрона до проекции точки наблюдения на плоскость электрона, q - - внешний электрический заряд -1.25e, q + - внутренний электрический заряд +0.25e, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, z - высота точки наблюдения (А) (расстояние от точки наблюдения до плоскости электрона), r 0 - нормировочный параметр. (В системе СГС отсутствует множитель .)

Данное математическое выражение представляет собой сумму векторов и ее надо вычислять по правилам сложения векторов, поскольку это поле двух распределенных электрических зарядов (q - =-1.25e и q + =+0.25e). Первое и третье слагаемое соответствуют ближним точкам зарядов, второе и четвертое - дальним. Данное математическое выражение не работает во внутренней (кольцевой) области электрона, генерирующей его постоянные поля (при одновременном выполнении двух условий: r

Потенциал электрического поля электрона в точке (А) в ближней зоне (r ~ r e), в системе СИ приблизительно равен:

где r 0 - нормировочный параметр, величина которого может отличаться от в формуле E. (В системе СГС отсутствует множитель .) Данное математическое выражение не работает во внутренней (кольцевой) области электрона, генерирующей его постоянные поля (при одновременном выполнении двух условий: r

Калибровку r 0 для обоих выражений ближней зоны необходимо производить на границе области, генерирующей постоянные поля электрона.

3 Магнитный момент электрона

В противовес квантовой теории полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращением электрических зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому магнитные поля есть у всех элементарных частиц с квантовым числом L>0.

Поскольку величины главного квантового числа L и спина у лептонов совпадают, то могут совпадать и величины магнитных моментов заряженных лептонов у обеих теорий.

Полевая теория элементарных частиц не считает магнитный момент электрона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.

Так, основной магнитный момент электрона создается током:

  • (-) с магнитным моментом -0,5 eħ/m 0e c

Для получения результирующего магнитного момента электрона надо умножить на процент энергии переменного электромагнитного поля, разделенный на 100 процентов и добавить спиновую составляющую (смотри Полевая теория элементарных частиц исходник), в результате получим 0,5005786 eħ/m 0e c. Для того чтобы перевести в обычные магнетоны Бора надо полученное число умножить на два.

4 Масса покоя электрона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и электрона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле, постоянное магнитное поле, переменное электромагнитное поле.

Как следует из приведенной формулы, величина массы покоя электрона зависит от условий, в которых электрон находится . Так поместив электрон в постоянное внешнее электрическое поле, мы повлияем на E 2 , что отразится на массе частицы. Аналогичная ситуация возникнет при помещении электрона в постоянное магнитное поле.

5 Новая физика: Электрон (элементарная частица) - итог

Перед Вами открылся новый мир - мир дипольных полей, о существовании которых физика 20 века и не подозревала . Вы увидели, что у электрона имеются не один, а два электрических заряда (внешний и внутренний) и соответствующие им два электрических радиуса. Вы увидели, что линейные размеры электрона значительно превышают линейные размеры протона. Вы увидели, из чего складывается масса покоя электрона и что воображаемый бозон Хиггса оказался не у дел (решения Нобелевского комитета - это еще не законы природы...). Более того, величина массы зависит от полей, в которых находится электрон. Все это выходит за рамки представлений, господствовавших в физике второй половины двадцатого века. - Физика 21 века - Новая физика переходит на новый уровень познания материи .

Владимир Горунович

На основе установленных М. Фарадеем законов электролиза ирландский ученый Д. Стоней выдвинул гипотезу о том, что существует элементарный заряд внутри атома. И в 1891 г. этот заряд Стоней предложил назвать электроном. Величину заряда электрона часто обозначают e или .

Законы электролиза еще не являются доказательством существования электрона как элементарного электрического заряда. Так, существовало мнение, о том, что все одновалентные ионы могут иметь разные заряды, а их средняя величина равна заряду электрона. Для доказательства существования в природе элементарного заряда следовало провести измерение зарядов отдельных ионов, а не суммарное количество электричества. Кроме того, открытым оставался вопрос о том, что связан ли заряд с какой-либо частицей вещества. Существенный вклад в решении этих вопросов сделали Ж. Перрен и Дж. Томсон. Они исследовали законы движения частиц катодных лучей в электрическом и магнитном полях. Перрен показал, что катодные лучи являются потоком частиц, которые несут отрицательный заряд. Томсон установил, что все данные частицы имеют равные отношения заряда к массе:

Помимо этого Томсон показал, что для разных газов отношение частиц катодных лучей одинаково, и не зависит от материала, из которого изготавливался катод. Отсюда можно было сделать вывод о том, что частицы, которые входят в состав атомов разных элементов, одинаковы. Сам Томсон сделал вывод о том, что атомы являются делимыми. Из атома любого вещества можно вырвать частицы, имеющие отрицательный заряд и очень малую массу. Все данные частицы обладают одинаковой массой и одинаковым зарядом. Такие частицы назвали электронами.

Опыты Милликена и Иоффе

Американский ученый Р. Милликен экспериментально доказал то, что элементарный заряд существует. В своих опытах он измерял скорость движения капель масла в однородном электрическом поле, которое создавалось между двумя электрическими пластинами. Капля заряжалась при столкновении с ионом. Сравнивались скорости движения капли не имеющей заряда и этой же капли после столкновения с ионом (приобретшей заряд). Зная напряженность поля между пластинами, вычислялся заряд капли.

Опыты Милликена повторил А.Ф. Иоффе. Он использовал металлические пылинки вместо капель масла. Изменяя напряженность поля между пластинками, Иоффе добивался равенства силы тяжести и силы Кулона, пылинка при этом оставалась неподвижной. Пылинку освещали ультрафиолетом. Заряд ее при этом изменялся, для уравновешивания силы тяжести приходилось изменять напряженность поля. По полученным величинам напряженности ученый судил об отношении электрических зарядов пылинки.

В опытах Милликена и Иоффе было показано, что заряды пылинок и капель всегда изменялись скачком. Минимальное изменение заряда было равно:

Электрический заряд всякого заряженного тела равен целому числу и кратен заряду электрона. Сейчас существует мнение, что имеются элементарные частицы - кварки, которые обладают дробным зарядом ().

Таким, образом, заряд электрона считают равным:

Примеры решения задач

ПРИМЕР 1

Задание В плоском конденсаторе, расстояние, между пластинами которого равно d, неподвижна капля масла, масса ее m. Какое количество избыточных электронов находится на ней, если разность потенциалов между пластинами составляет U?
Решение В данной задаче рассматривается аналог опыта Милликена. На каплю масла действует две силы, которые взаимно компенсируют друг друга. Это сила тяжести и сила Кулона (рис.1).

Так как поле внутри плоского конденсатора можно считать однородным, имеем:

где E - напряжённость электростатического поля в конденсаторе.

Величину электростатической силы можно найти как:

Поскольку частица находится в равновесии и не движется, то по Второму закону Ньютона получаем:

Из формулы (1.3) выразим заряд частицы:

Зная величину заряда электрона (), число избыточных электронов (создающих заряд капли), найдем как:

Ответ

ПРИМЕР 2

Задание Какое количество электронов потеряла капля после облучения ультрафиолетом (см. Пример 1), если ускорение, с которым она стала двигаться вниз равно a?

Решение Второй закон Ньютона для этого случая запишем как:

Сила кулона изменилась, так как изменился заряд частицы после облучения:

В соответствии со вторым законом Ньютона имеем:

koreada.ru - Про автомобили - Информационный портал