Физиологических изменений в эндокринной и. Эндокринная система и старение. Синтез научного и эзотерического знания об эпифизе

Эндокринная система состоит из органов и тканей, которые производят гормоны. Гормоны природные химические вещества, производимые в одном месте, попадают в кровь, а затем используются другими органами-мишенями и системами.

Гормоны управляют органами-мишенями. Некоторые органы и системы имеют свои собственные системы внутреннего контроля вместо гормонов.

С возрастом, естественно, возникают изменения в тех системах организма, которые находятся под контролем. Некоторые целевые ткани становятся менее чувствительными к их контрольным гормонам. Количество гормонов, вырабатываемых эндокринной системой, также может меняться.

Уровень некоторых гормонов в крови может иметь увеличение или некоторое снижение, а некоторые остаются неизменными. Обменные процессы (метаболизм) соответственно могут протекать быстрей или более медленно.

Многие из органов, которые производят гормоны, в свою очередь, контролируются другими гормонами. Старение также изменяет и этот процесс. Например, замедление роста эндокринной ткани может привести к снижению выработки ею соответствующих гормонов, чем это было в более раннем возрасте, или гормонов может производить столько же, но медленнее.

Работа гипоталамуса

Гипоталамус находится в головном мозге. Он производит гормоны, которые управляют другими структурами в эндокринной системе. Сумма этих регулирующих гормонов остается примерно такой же, но ответа эндокринных органов на эти гормоны может изменяться с возрастом.

Работа гипофиза

Гипофиз также находится в головном мозге. Эта железа достигает своего максимального размера в среднем возрасте, а затем постепенно уменьшается. Она состоит из трех частей: передней, промежуточной и задней.

Передняя часть производит гормоны, которые влияют на щитовидную железу, кору надпочечников, яичников, яичек и молочных желез. Эти гормоны регулируют синтез и секрецию гормонов гипофизозависимых желез по принципу обратной связи: при снижении концентрации определённого гормона в крови клетки аденогипофиза выделяют сигнальный гормон, который стимулирует образование гормона этой железой, а повышение его уровня в крови приводит к замедлению секреции сигнального гормона.

В промежуточной части вырабатываются липотропные факторы гипофиза, оказывающие влияние на мобилизацию и утилизацию жиров в организме.

Работа щитовидной железы

Щитовидная железа расположена в области шеи и производит гормоны, которые помогают контролировать обмен веществ. По мере старения организма, щитовидной железы часто становится бугристой (узловой). Метаболизм постепенно снижается, начиная примерно с 20 лет. С возрастом выделение гормонов может снизиться.

Работа паращитовидных желез

Паращитовидные железы - четыре крошечные железы, расположенные вокруг щитовидной железы. Они продуцируют паратиреоидный гормон, участвующий в регуляции кальциевого и фосфорного обмена. Это, в свою очередь, влияет на прочность костей. Изменения в уровне гормона паращитовидных желез может способствовать остеопорозу.

Работа поджелудочной железы

Инсулин, гормон, вырабатываемый поджелудочной железой. Молекула инсулина связывается со специфическим гликопротеиновым рецептором на поверхности клетки-мишени. Она действует как ключ к замку, чтобы помочь сахару (глюкозе) перейти из крови в клетки, где она может быть использована для получения энергии.

Средний уровень глюкозы натощак повышается от 6 до 14 мг / дл (миллиграмм на децилитр) за каждые 10 лет после 50 лет. Это потому, что клетки становятся менее чувствительными к действию инсулина, вероятно, из-за потери количества инсулина рецепторами в клеточной стенке.

Работа надпочечников

Надпочечники находятся чуть выше почки. Кора надпочечников, ее поверхностный слой, производит гормоны альдостерона и кортизола.

Альдостерон регулирует водно-солевой баланс.

Кортизол является гормоном "стресса". Он влияет на распад глюкозы, белков и жиров, а также обладает противовоспалительным и антиаллергенным эффектом.

Секреция альдостерона снижается с возрастом, это может способствовать появлению головокружения и снижению артериального давления при резком переходе из горизонтального состояния тела в вертикальное (ортостатическая гипотензия).

Секреция кортизола так же уменьшается с возрастом, но уровень в крови остается примерно такой же. Уровень дегидроэпиандростерона также падает, хотя последствия этого падения на организм не ясны.

Работа половых желез

Яичники и яички имеют две функции. Они производят половые клетки (яйцеклетки и сперматозоиды). Также они производят половые гормоны, которые контролируют развитие вторичных половых признаков, таких, как грудь и волосы на лице и теле. С возрастом мужчины иногда испытывают снижение уровня тестостерона. У женщин наблюдается снижение уровня эстрадиола и других гормонов эстрогена после менопаузы.

Влияние изменения гормонов на организм

В целом, уровень некоторых гормонов снижается, некоторые остаются без изменений, а некоторые увеличивается с возрастом.

Гормоны, которые обычно снижаются с возрастом :

Альдостерон
- Кальцитонин
- Гормон роста
- Ренин
- У женщин, эстроген и пролактин.

Гормоны, которые остаются неизменными или незначительно снижаются:

Кортизол
- Адреналин
- Инсулин
- Гормоны щитовидной железы Т3 и Т4
- У мужчин уровень тестостерона обычно несколько снижается по мере старения.

Гормоны, выработка которых может увеличиться с возрастом:

Фолликулостимулирующий гормон (ФСГ)
- Лютеинизирующий гормон (ЛГ)
- Норадреналин
- Паратгормон.

Изменения со стороны желёз внутренней секреции идут гетерохронно, то есть разновременно. Так функция гипофиза сохраняется до глубокой старости.

В щитовидной железе наблюдаются существенные изменения её структуры. Снижается масса железы за счёт замещения части железистой ткани на жировую. Снижается скорость накопления йода в железе. Снижается потребление кислорода железистой тканью, что приводит к снижению синтеза тиреоидных гормонов, в тоже время чувствительность тканей и органов к гуморальным факторам возрастает, в том числе и к гормонам щитовидной железы.

Следовательно, в организме процессы саморегуляции поддерживаются на высоком уровне довольно долго.

Женские половые железы - яичники.

С возрастом меняется величина и форма яичников. Максимальной массы они достигают к 30 годам. После 40 лет идёт прогрессивное снижение массы яичников, они изменяют свою форму, подвергаются атрофии и фиброзу.

Несмотря на происходящие изменения, яичники долгое время сохраняют способность к продукции эстрогенов. За счёт эстрогенов поддерживаются пролиферативные процессы в слизистой оболочке матки и влагалища, сохраняется форма молочных желёз, сохраняются вторичные половые признаки.

С наступлением менопаузы резко падает продукция эстрогенов, и это приводит к регрессу вторичных половых признаков. На этом фоне возможно бурное развитие атеросклероза, остепороза, деформирующего остеоартроза.

Мужские половые железы - яички.

Возрастные изменения со стороны мужских половых желёз происходит в более позднем возрасте, чем у женщин и текут в более медленном темпе. Мужские половые железы достигают наибольшей массы к 25 – 30 годам, в дальнейшем они незначительно уменьшаются в массе. Возрастные изменения, происходящие в них, приводят к снижению сперматогенеза, но это сугубо индивидуально. Геронтологи отметили, что даже у глубоких стариков в сперме обнаруживаются нормальные, активные сперматозоиды.

С возрастом в яичках отмечается облитерация семенных канальцев. Снижается количество клеток Лейдига, ответственных за выработку андрогенов. Поэтому при старении половых желёз у мужчин отмечается угасание вторичных половых признаков, появляется гинекомастия, меняется тембр голоса, возможно развитие ожирения по женскому типу, замедляется рост усов и бороды. Возможно развитие психической слабости и снижение физической силы.

Факторы, ускоряющие старение эндокринной системы:

Курение,

Алкоголизм,

токсикомания,

оперативные вмешательства,

вирусные инфекции,

применение медикаментов

Гипоталамо-гипофизарная регуляция: гипоталамус стареет структурно и функционально неравномерно, наряду с гибелью нейронов в одних ядрах гипоталамуса, сдвиги в других не очень выражены. Активность нейросекреторных процессов в ядрах гипоталамуса снижается или не меняется.

Отмечается ослабление нейросекреторной системы на рефлекторные (кожно-болевое раздражение) или афферентные нервные раздражения и усиливается реакция на гуморальные раздражители - введение адреналина.

Гипофиз у пожилых людей изменяется в массе незначительно. Клеточный состав его изменяется в сторону увеличения базофильных аденоцитов и уменьшения эозинофильных аденоцитов. С годами постепенно падает секреторная активность базофильных аденоцитов, продуцирующих гонадотропный гормон, а в гипофизе наступает значительная редукция капиллярной сети, особенно в задней доле.

При старении развиваются неравномерные изменения в различных звеньях гипоталамо-гипофизарной системы. Они характеризуются, с одной стороны, нарастающим ограничением функций, с другой - мобилизацией адаптационно-регуляторных механизмов.

Надпочечники: с возрастом незначительное увеличение надпочечников за счёт узловатой гиперплазии коры, после 50 лет происходит значительная атрофия клубочковой и сетчатой зон, поэтому уменьшается выделения с мочой 17-кетостероидов, эстрогена, прогнандиола. Возрастное уменьшение гормональной активности коры надпочечников ведёт к снижению адаптационных возможностей организма.

Щитовидная железа: происходит уменьшение размеров фолликулов, падение числа клеток, кристаллизация секрета, увеличение его плотности. Увеличение стромы, коллагеновых и эластических волокон обусловлено исчезновением фолликулов и образованием заместительного фиброза. Инволютивные процессы в щитовидной железе сопровождаются уменьшением поглощения йода, при этом содержание йода в крови может возрастать. Явления старческого гипотиреоза следует рассматривать, как физиологическое явление.

Климакс у женщин наблюдается в 45-48 лет: снижается выработка эстрогенов, нарушается менструальный цикл, уменьшается матка в размерах; у мужчин – после 45 лет.

text_fields

text_fields

arrow_upward

Возникающие при старении организма изменения в гормональной регуляции его функций могут развиваться на уровне продукции гормонов, их концентрации во внутренней среде, на уровне связывающих гормоны белков и, наконец, на уровне их рецепции клетками. Эти изменения уменьшают ответ тканей- мишеней на действие гормонов.

По мере старения снижа­ется секреторная функция

      • щитовидной,
      • поджелудочной,
      • половых желез,
      • коры надпочечников,
      • эпифиза.

Снижение функции щитовидной железы при старении

text_fields

text_fields

arrow_upward

Снижение функции щитовидной железы при старении выражается в уменьшении в крови концентрации тироксина (Т 4) и трииодтиронина (Т 3), уменьшении фиксации щитовидной железой радиоактив­ного йода.

Одновременно имеет место замедление использования тироксина на периферии, деградация радиоактивного тироксина уменьшается приблизительно на 50% от 20 к 80 годам.

Чувствитель­ность гипоталамо-гипофизарного комплекса к ингибирующему воз­действию Т 3 снижается, что может играть роль в возрастном по­вышении базального уровня ТТГ у здоровых пожилых мужчин и женщин.

Изменение эндокринных функций поджелудочной железы

text_fields

text_fields

arrow_upward

В поджелудочной железе нарушается соотношение а- и В -клеток за счет уменьшения последних. Содержание инсулина в островках Лангерганса мало изменяется с возрастом, но биологическая актив­ность циркулирующего гормона уменьшена у стариков, реакция В- клеток их поджелудочной железы на гипергликемию снижена, по мере старения организма понижается чувствительность тканей к действию инсулина.

Отсюда, у стариков возникает гипергликемия после приема пищи, в свою очередь, вызывающая реактивную гиперинсулинемию, которая и обеспечивает использование глюкозы мышечной тканью.

Но одновременно гиперинсулинемия увеличивает массу жира, концентрацию в крови ЛПОНП, ЛПНП, триглицеридов и холестерина, что ускоряет развитие атеросклероза, формирует ме­таболическую иммунодепрессию. Последняя особенно опасна, т.к. иммунодефицит в 100-1000 раз повышает риск заболевания человека раком.

Изменение эндокринных функций половых желез

text_fields

text_fields

arrow_upward

У мужчин

Продукция тестостерона в яичках у пожилых мужчин снижена . В плазме содержание тестостерона и дигидротестостерона регулярно уменьшается у мужчин с 18 до 80 лет. Так, у стариков концент­рация свободного плазматического тестостерона снижается до поло­вины или 2/3 уровня, характерного для молодых мужчин. Парал­лельно увеличивается содержание в плазме тестикулярных эстроге­нов и отношения - свободные эстрогены/свободный тестостерон. При этом, свободная фракция эстрогенов уменьшается медленнее во времени, по сравнению с андрогенами. Эти гормональные сдвиги сопровождаются уменьшением массы яичек, размеров сперматогониев и числа сперматозоидов. Однако, сперматогенез сохраняется до глубокой старости. Либидо, частота половых контактов у стариков снижены. Вместе с тем, у мужчин половая потенция может сохра­няться до 80-90 лет.

У женщин

У женщин секреция эстрогенов и их содержание в моче регуляр­но уменьшается от 30 к 50 годам, хотя выделение с мочой экстра-диола и эстрона продолжает уменьшаться и в дальнейшем. После прекращения репродуктивной способности у женщин секреция гонадотропинов переднего гипофиза (фолликулинстимулирующего, лютеинизирующего) возрастает, т.к. снижается секреция эстрогенов, и механизм отрицательной обратной связи уже не включается в регу­ляцию. У женщин в период глубокой менопаузы (после 60-65 лет) имеет место инволюция матки, истончение эпителия влагалища, атрофия вульвы, уменьшаются молочные железы.

Эндокринная система-это система желез внутренней секреций со своей сложной регуляцией, иерархией, комплексом взаимосвязей между органами. Эндокринная система организма в целом поддерживает постоянство во внутренней среде, необходимое для нормального протекания физиологических процессов. Помимо этого, эндокринная система совместно с нервной и иммунной системами обеспечивают репродуктивную функцию, рост и развитие организма, образование, утилизацию и сохранение (“про запас” в виде гликогена или жировой клетчатки) энергии. Роль сигналов в этой системе выполняют гормоны.
Гормоны - биологические активные вещества, обладающие строго специфическим и избирательным действием, способные изменять уровень жизнедеятельности организма. Все гормоны делятся на:
- Стероидные гормоны - производятся из холестерина в коре надпочечников, в половых железах.
- Полипептидные гормоны - белковые гормоны (инсулин, пролактин, АКТГ и др.)
- Гормоны производные аминокислот - адреналин, норадреналин, дофамин и др.
- Гормоны производные жирных кислот - простогландины.

По физиологическому действию гормоны подразделяются на:
- Пусковые (гормоны гипофиза, эпифиза, гипоталамуса). Воздействуют на другие железы внутренней секреции.
- Исполнители - воздействуют на отдельные процессы в тканях и органах.

Физиологическое действие гормонов направлено на:
1) обеспечение гуморальной , т.е. осуществляемой через кровь, регуляции биологических процессов;
2) поддержание целостности и постоянства внутренней среды, гармоничного взаимодействия между клеточными компонентами тела;
3) регуляцию процессов роста, созревания и репродукции.
Орган реагирующий на данный гормон является органом-мишенью (эффектор). Клетки этого органа снабжены рецепторами.

Гормоны регулируют активность всех клеток организма. Они влияют на остроту мышления и физическую подвижность, телосложение и рост, определяют рост волос, тональность голоса, половое влечение и поведение. Благодаря эндокринной системе человек может приспосабливаться к сильным температурным колебаниям, излишку или недостатку пищи, к физическим и эмоциональным стрессам. Изучение физиологического действия эндокринных желез позволило раскрыть секреты половой функции и чудо рождения детей, а также ответить на
вопрос, почему одни люди высокого роста, а другие низкого, одни полные, другие худые, одни медлительные, другие проворные, одни сильные, другие слабые.
В нормальном состоянии существует гармоничный баланс между активностью эндокринных желез, состоянием нервной системы и ответом тканей-мишеней (тканей, на которые направлено воздействие). Любое нарушение в каждом из этих звеньев быстро приводит к отклонениям от нормы. Избыточная или недостаточная продукция гормонов служит причиной различных заболеваний, сопровождающихся глубокими химическими изменениями в организме.
Изучением роли гормонов в жизнедеятельности организма и нормальной и патологической физиологией желез внутренней секреции занимается эндокринология .

Старение и эндокринная система

Процесс старения сопровождается многочисленными нарушениями функций эндокринной системы. Часто трудно определить, что является причиной этих нарушений – собственно старость или болезни, ее сопровождающие.

У старых животных концентрации большинства гормонов снижены. Еще более разница между молодым и старым организмами заметна при сравнении реакций эндокринных желез на внешнее воздействие. Так, гипофиз старых крыс отвечает на действие релизинг-факторов гипоталамуса (либеринов) секрецией меньшего количества тропных гормонов. Искусственно восполняя недостающие в гипофизе старых крыс вещества, можно задержать или обратить вспять ослабление репродуктивной функции, развитие опухолей и инволюцию вилочковой железы (тимуса).

Еще одна причина ослабления эндокринной регуляции – возрастные изменения структуры гормонов и, соответственно, их активности. Так, по мере старения меняется молекулярная масса и снижается активность тиреотропина (ТТГ). Искусственным введением кальция в клетку в некоторых случаях удается предотвратить снижение ее ответа на гормоны. Возможно, это подсказывает новую стратегию терапии. Происходят изменения и в связывании кальция в клетке.

В старости усиливается образование катехоламинов в симпатической части вегетативной нервной системы. С другой стороны, ослабляются эффекты, передаваемые воздействием катехоламинов на адренорецепторы. Все это суживает диапазон возможных ответов на экстремальные воздействия внешней среды. Возможно, дополнительные количества катехоламинов нужны для лучшей утилизации нутриентов: действуя на адипоциты, катехоламины усиливают липолиз. Через адренорецепторы печени они активируют и гликогенолиз.

В старости происходят изменения в регуляции обмена глюкозы. Количество Р-клеток в поджелудочной железе уменьшается. В ответ на рост концентрации глюкозы они высвобождают в кровь меньшее количество инсулина. Обратная связь, подавляющая выброс глюкозы печенью (при повышении ее концентрации в крови), действует медленнее. Активность инсулина падает, соответственно, нарушается поглощение глюкозы мышцами. Результатом этих изменений является снижение толерантности к глюкозе, а иногда и развитие сахарного диабета.
Связь старения и эндокринной системы описывается элевационной теорией Дильмана.

Элевационная теория Дильмана

В начале 1950-х годов известный отечественный геронтолог В.М. Дильман выдвинул и обосновал идею о существовании единого регуляторного механизма, определяющего закономерности возрастных изменений различных гомеостатических (поддерживающих постоянство внутренней среды) систем организма. По гипотезе Дильмана, основным звеном механизмов как развития (лат. elevatio – подъем, в переносном смысле – развитие), так и последующего старения организма является гипоталамус – «дирижер» эндокринной системы. Некоторые геронтологи, в том числе и Дильман, полагают, что многие изменения, появляющиеся в организме по мере старения человека, обусловлены постепенной утратой организмом способности сохранять гомеостаз посредством гормонального контроля и мозговой регуляции. Многие симптомы старения, судя по всему, объясняются потерей контроля за образованием гормонов, в результате чего их вырабатывается либо слишком много, либо слишком мало и регулирование жизненных процессов разбалансировывается. Климакс, например, обусловлен потерей гормона эстрогена, производимого яичниками. Это приводит к снижению способности к деторождению и уменьшению влагалищных выделений, (что может нарушать половое общение), снижению тонуса мышц, источение и сухости кожи. В климактерический период возрастает количество холестерина и крови, а это значит, что после прекращения менструаций женщины подвергаются наравне с мужчинами опасности заболеваний сердца, которые связаны с тем, что отложения холестерина блокируют кровоснабжение сердца. Главная причина старения – это возрастное снижение чувствительности гипоталамуса к регуляторным сигналам, поступающим от нервной системы и желез внутренней секреции. На протяжении 1960-80-х гг. с помощью экспериментальных исследований и клинических наблюдений было установлено, что именно этот процесс приводит к возрастным изменениям функций репродуктивной системы и гипоталамо-гипофизарно-надпочечниковой системы, обеспечивающей необходимый уровень вырабатываемых корой надпочечников глюкокортикоидов – «гормонов стресса», суточные колебания их концентрации и повышение секреции при стрессе, и, в конечном итоге, к развитию состояния так называемого «гиперадаптоза». Следствием аналогичных возрастных изменений в системе метаболического гомеостата, регулирующего аппетит и энергетическое обеспечение функций организма, является нарастание с возрастом содержания жира в теле, снижение чувствительности тканей к инсулину (предиабет) и развитие атеросклероза.
Эндокринная регуляция:

Важным этапом в развитии элевационной теории было установление роли возрастных изменений, закономерно возникающих в этих трех основных «супергомеостатах» (репродуктивном, адаптационном и метаболическом), в формировании таких имеющих ключевое значение для продолжительности жизни индивидуума феноменов, как метаболическая иммунодепрессия и канкрофилия, т.е. формирование условий, способствующих возникновению злокачественных новообразований. Развивая и углубляя на протяжении почти 40 лет свою концепцию, В.М. Дильман пришел к убеждению, что старение (и главные болезни, ассоциированные со старением) не запрограммировано, а является побочным продуктом реализации генетической программы развития и поэтому старение возникает с закономерностью, свойственной генетической программе. По концепции Дильмана, старение и связанные с ним болезни – это побочный продукт реализации генетической программы онтогенеза – развития организма.
Онтогенетическая модель возрастной патологии открыла новые подходы к профилактике преждевременного старения и болезней, связанных с
возрастом и являющихся основными причинами смерти человека: болезней сердца, злокачественных новообразований, инсультов, метаболической иммунодепрессии, атеросклероза, сахарного диабета пожилых и ожирения, психической депрессии, аутоиммунных и некоторых других заболеваний. Из онтогенетической модели следует, что развитие болезней и естественных старческих изменений можно затормозить, если стабилизировать состояние гомеостаза на уровне, достигаемом к окончанию развития организма. Если замедлить скорость старения , то, как полагал В.М. Дильман, возможно увеличить видовые пределы жизни человека.

Современные представления о механизмах геропротекторного действия ограниченной по калорийности диеты, антидиабетических бигуанидов, пептидов эпифиза и мелатонина, некоторых нейротропных препаратов (в частности, L-ДОФА и ингибитора моноаминоксидазы депренила), янтарной кислоты свидетельствуют о перспективности такого подхода.

К сожалению, статей Дильмана в электронном виде пока нет, но можно прочитать его главный труд "Большие биологические часы" .

Таким образом, теория Дильмана является обобщением группы теорий программируемой гибели. Современный вариант теории Дильмана- нейроэндокринная теория. Одним из главных возраст-ассоциированных нарушений считается нечувствительность клеток к гормональным стимулам.

Эпифиз и механизмы старения

Сейчас в научном мире стало крылатым выражение "Эпифиз- это солнечные часы организма". Наиболее существенным для живой природы явлением на Земле является смена дня и ночи, света и темноты. Вращение ее вокруг своей оси и одновременно вокруг Солнца отмеряет сутки, сезоны и годы нашей жизни. Все больше сведений накапливается и о роли эпифиза (шишковидной железы) как основного ритмоводителя функций организма. Свет угнетает продукцию и секрецию мелатонина, и поэтому его максимальный уровень в эпифизе и крови у человека и животных многих видов наблюдается в ночные часы, а минимальный - в утренние и днем. При старении функция эпифиза снижается, что проявляется прежде всего нарушением ритма секреции мелатонина, и снижением уровня его секреции (Touitou, 2001 ; Reiter et al., 2002).
У людей в возрастной группе 60-74 года у большинства физиологических показателей наблюдается положительный фазовый сдвиг циркадного ритма (~1.5-2 часа) с его последующей десинхронизацией у лиц старше 75 лет (Gubin, 2001). Если эпифиз уподобить биологическим часам организма, то мелатонин можно уподобить маятнику, который обеспечивает ход этих часов и снижение амплитуды которого приводит к их остановке. Пожалуй, более точно будет сравнить эпифиз с солнечными часами, в которых мелатонин играет роль тени от гномона - стержня, отбрасывающего тень от солнца. Днем солнце высоко, и тень коротка (уровень мелатонина минимален), в середине ночи - пик синтеза мелатонина эпифизом и секреции его в кровь. При этом важно то, что мелатонин имеет суточный ритм, то есть единицей его измерения является хронологический метроном - суточное вращение Земли вокруг своей оси.
Если эпифиз - солнечные часы организма, то, очевидно, любые изменения длительности светового дня должны существенным образом сказываться на его функциях и в конечном счете на скорости его старения. Циркадный ритм весьма важен не только для временной организации физиологических функций организма, но и для продолжительности его жизни. Установлено, что с возрастом нейронная активность супрахиазматического ядра снижается, при этом при содержании в условиях постоянного освещения эти нарушения развиваются быстрее (Watanabe et al, 1995). Старые животные резистентны к действию клоргилина, стимулирующего биосинтез мелатонина в условиях круглосуточного освещения; таким же эффектом обладает разрушение супрахиазматического ядра гипоталамуса (Oxenkrug, Requintina, 1998). В ряде работ было показано, что нарушение фотопериодов может приводить к существенному уменьшению продолжительности жизни животных (Pittendrigh, Minis, 1972 ; Pittendrigh, Daan, 1974).
M. W. Hurd и М. R. Ralph (1998) исследовали роль циркадного ритма в старении организма на золотистых хомячках Mesocricetus auratus с мутацией ритмоводителя tau . Авторы получили 3 группы хомячков; имеющих дикий тип (+/+), гомозигот tau-/tau- и гетерозигот tau-/+, а затем их гибриды. Предварительные трехлетние наблюдения показали, что гетерозиготы tau-/+ имели на 20 % меньшую продолжительности жизни, чем гомозиготы. Продолжительность жизни мутантных гетерозигот tau-/+, содержавшихся при режиме 14 часов - свет, 10 часов - темнота, была почти на 7 месяцев короче, чем в группах гомозигот +/+ или tau-/tau- (p < 0.05), однако средняя продолжительность жизни обеих гомозиготных групп была практически одинаковой. При круглосуточном содержании хомячков в условиях постоянного слабого освещения (20- 40 люкс) с 10-недельного возраста средняя продолжительность жизни гетерозигот и гомозигот была одинаковой и колебалась от 15 до 18 месяцев. Для изучения причин влияния циркадного ритма на продолжительность жизни авторы имплантировали в головной мозг старых хомячков супрахиазматические ядра от плодов хомячков различного генотипа. Было установлено, что хомячки с прижившимися имплантатами жили в среднем на 4 месяца дольше, чем интактные или ложнооперированные контрольные животные. Авторы полагают, что результаты их экспериментов свидетельствуют о том, что нарушения циркадного ритма сокращают продолжительность жизни животных, тогда как их восстановление с помощью имплантации фетального супрахиазматического ядра (спонтанного осциллятора) увеличивает ее почти на 20%. Таким же эффектом, по мнению авторов, будут обладать любые воздействия, направленные на нормализацию циркадного ритма. Интересно, что разрушение осциллятора (супрахиазматического ядра) приводит к сокращению продолжительности жизни животных (DeCoursey et al., 2000).

Мелатонин и старение

Мелатонин- "гормон ночи",гормон эпифиза, регулирующий циркадные ритмы. Основной физиологический эффект мелатонина заключается в торможении секреции гонадотропинов. Кроме того, снижается, но в меньшей степени, секреция других тропных гормонов передней доли гипофиза - кортикотропина, тиротропина, соматотропина.
Секреция мелатонина подчинена суточному ритму, определяющему, в свою очередь, ритмичность гонадотропных эффектов и половой функции. Синтез и секреция мелатонина зависят от освещённости - избыток света тормозит его образование, а снижение освещённости повышает синтез и секрецию гормона. У человека на ночные часы приходится 70 % суточной продукции мелатонина.

Впервые способность мелатонина увеличивать продолжительность жизни мышей была установлена W. Pierpaoli и G. J. M. Maestroni (Pierpaoli, Maestroni, 1987). В ноябре 1985 г. авторы начали ежедневные введения мелатонина с питьевой водой {10 мг/л) 10 самцам мышей линии C57BL/6J. 10 контрольных животных получали 0.01 %-ный раствор этанола, служивший растворителем для мелатонина. В начале опыта возраст мышей составлял 575 дней (около 19 месяцев), и все они были вполне здоровы. Мелатонин животные получали с 18.00 до 8.30 ч. Через 5 месяцев после начала опыта контрольные животные стали терять в весе, были малоактивны, облысели. Введение мелатонина предохраняло животных от возрастной потери веса и он сохранялся на уровне 18-месячных. Средняя продолжительность жизни мышей под влиянием мелатонина увеличилась на 20%, составив 931 ±80 дней против 752±81 в контрольной группе. По расчетам авторов различие достоверно (р 0.05).
В 1991 г. W. Pierpaoli и соавт. (1991) представили результаты трех серий опытов с хроническим введением мелатонина мышам различных линий. Во всех опытах мелатонин вводили только в ночное время с питьевой водой {10 мг/л). 15 самкам мышей линии СЗН/Не мелатонин начинали вводить с 12-месячного возраста. В контрольной группе было 14 мышей. Мелатонин не только не увеличил продолжительность жизни этих, мышей, но привел к увеличению частоты развития новообразований, преимущественно поражавших органы репродуктивной системы (лимфо - или ретикулосаркомы , карциномы яичников). Данные о средней продолжительности жизни и частоте новообразований в контрольной и подопытной группах не были приведены. Следует отметить, что самок мышей линии СЗН/Не характеризует высокая частота развития спонтанных опухолей молочной железы (Storer, 1966), однако авторы не сообщают каких-либо сведений об их обнаружении в контрольной или подопытной группах. Мыши, получавшие мелатонин, жили в среднем на 2 месяца меньше контрольных.
Во 2-й серии опытов мелатонин вводили в дневное или ночное время мышам-самкам линии NZB (New Zealand Black), характеризующихся высокой частотой развития аутоиммунной гемолитической анемии, нефросклероза и системных или локализованных ретикулоклеточных опухолей типа А или В. В каждой группе было по 10 животных, и мелатонин начинали вводить с четырехмесячного возраста. Введение мелатонина днем не оказывало влияния на выживаемость мышей, и все они погибли к 20-месячному возрасту (в контроле - к 19-му месяцу жизни). При введении мелатонина в ночные часы в возрасте 20 месяцев были живы 4 из 10 мышей этой группы, а до 22-месячного возраста дожили 2 мыши. Последняя мышь прожила 2 месяца, то есть на 4 месяца больше максимальной продолжительности жизни в контрольной группе. Авторы не наблюдали каких-либо различий в причинах смерти в контрольной и подопытных группах.
3-я серия опытов была повторением опыта с мышами-самцами линии C57BL/6. На этот раз в контрольной группе было 20, а в подопытной - 15 мышей в возрасте 19 месяцев. Средняя продолжительность жизни в контроле составила 743 ± 84 дня, а в группе, получавшей мелатонин, - 871 ±118 дней (р0.05 при расчете с использованием критерия t Стьюдента). Введение мелатонина не сказывалось существенно на весе тела мышей в ту или иную сторону при сравнении с контролем.
Позднее W. Pierpaoli и W. Regelson (1994) обобщили старые данные и представили результаты новых экспериментов по изучению влияния мелатонина на продолжительность жизни мышей разных линий. Мелатонин вводили с питьевой водой (10 мг/л) в ночные часы (с 18.00 до 8.30 ч.). Самкам мышей BALB/c гормон начинали вводить с 15-месячного возраста. Средняя продолжительность жизни 26 контрольных животных составила 715 дней, тогда как получавшие мелатонин 12 мышей жили в среднем 843 дня, то есть на 18 % дольше. Медиана составила соответственно 24.8 месяца в контроле и 28.1 месяца в подопытной группе, а максимальная продолжительность жизни - 27.2 и 29.4 месяца соответственно. Авторы не наблюдали каких-либо различий в весе тела между мышами обеих групп. В другом опыте мелатонин вводили также с питьевой водой в ночные часы в дозе 10 мг/л самцам мышей BALB/c начиная с 18-месячного возраста и убивали группами через 4, 7 и 8 месяцев после начала воздействия. Через 8 месяцев наблюдения вес тимуса, надпочечников и тестикул мышей, получавших мелатонин, существенно отличался от одновозрастного контроля. Аналогичным образом улучшались такие показатели, как число лимфоцитов в периферической крови, уровень цинка, тестостерона и тиреоидных гормонов. Авторы полагают, что циклическое введение мелатонина оказывает положительное влияние на мышей, поддерживая в них более молодое состояние эндокринных и тимико-лимфоидных органов. Следует отметить, что число старых мышей в группах было крайне невелико (5-6), а контрольная группа 3-месячных мышей включала только 3 животных.
S. P. Lenz и соавт. (1995) вводили мелатонин самкам мышей NZB/W в инъекциях в разовой дозе 100 мкг на мышь (2-3.5 мг/кг) ежедневно в утренние часы (между 08.00 и 10.00 ч) или вечером (между 17.00 и 19.00 ч) начиная с восьмимесячного возраста и в течение 9 месяцев. В каждой группе было по 15 животных. Было установлено, что введение мелатонина в утренние часы существенно (р<0.001) увеличивает выживаемость мышей, тогда как вечерние инъекции таким эффектом не обладали. Так, если до 34-недельного возраста дожило только 20 % контрольных мышей, в "утренней" группе были живы 65% животных, причем 30% дожили до конца периода наблюдения (44 недели). В "вечерней" группе до 34-недельного возраста дожило практически столько же (60%) мышей, однако 37-недельный возраст пережили лишь 20% животных. Авторы отметили замедление возрастного нарастания протеинурии у мышей, которым мелатонин вводили в утренние часы. К сожалению, наблюдение за животными было прекращено до естественной гибели животных во всех группах. Число мышей в группах было весьма невелико, полная аутопсия животных не производилась.
Е. Mocchegiani и соавт. (1998) вводили мелатонин с питьевой водой (10 г/л) в ночные часы 50 самцам мышей линии Balb/c начиная с 18-месячного возраста. 50 мышей другой группы получали воду с добавлением сульфата цинка (22 мг/л) и 50 служили интактным контролем. За мышами наблюдали до естественной гибели, их регулярно взвешивали и определяли потребление корма. Применение мелатонина и цинка существенно сдвигало вправо кривые выживаемости животных и увеличивало на 2 и 3 месяца соответственно максимальную продолжительность жизни животных по сравнению с интактным контролем. Ни мелатонин, ни цинк не влияли на потребление корма и динамику веса тела животных.
A. Conti и G. J. M. Maestroni (1998) изучали влияние мелатонина на продолжительность жизни самок мышей линии NOD (non-obese diabetic), характеризующихся высокой частотой развития инсулинзависимого диабета. Одной из групп мышей (n = 25) была произведена эпифизэктомия сразу после рождения, 2-я группа (n = 30) получала мелатонин подкожно в дозе 4 мг/кг в 16.30 ч 5 раз в неделю начиная с возраста 4 недели и до 38-й недели жизни. Мышам 3-й группы по такой же схеме вводили подкожно бычью сыворотку (PBS), и они служили контролем к группе 2. Мышам 4-й группы (n = 17) мелатонин вводили с питьевой водой (10 мг/л) в ночные часы 5 раз в неделю с 4-й по 38-ю неделю жизни; 5-ю группу составили 29 интактных животных. Эпифизэктомированные мыши начали погибать уже в возрасте 19 недель, аутоиммунный диабет у них быстро прогрессировал, и к 32-й неделе жизни 92 % всех животных этой группы погибли. В контроле мыши начали погибать с 18-й недели жизни, однако наклон кривой выживаемости был существенно меньшим и к 50-й неделе жизни вымерло 65.5 % контрольных животных. При хроническом подкожном введении мелатонина в течение 33 недель существенно замедлялась скорость развития болезни и снижалась смертность. До возраста 50 недель не дожило только 10% мышей, которым подкожно вводили мелатонин. Интересно, что инъекции бычьей сыворотки также замедляли развитие диабета, однако до возраста 50 недель дожило лишь 32 % мышей этой группы. Эффект введения мелатонина с питьевой водой был менее выражен, чем при его подкожном введении: до конца срока наблюдения дожило 58.8 % мышей этой группы против 34.5 % в контроле (р<0.0019). Таким образом, если эпифизэктомия ускоряла развитие диабета и укорачивала продолжительность жизни мышей линии NOD, то введение мелатонина замедляло развитие заболевания и увеличивало продолжительность жизни животных (Conti, Maestroni, 1998).
В другом большом исследовании мелатонин с кормом (11 ррm или 68 мкг/кг веса тела в день) давали самцам мышей линии C57BL/6 начиная с 18-месячного возраста (Lipman et al., 1998). Динамика веса тела и потребления корма под влиянием мелатонина существенно не отличалась от таковой у контрольных животных. Не наблюдалось также никаких различий в смертности в группе контрольных мышей и мышей, получавших с кормом мелатонин. Так, 50 %-ная смертность в контроле наступала в возрасте 26.5 месяцев, а при введении мелатонина - в 26.7 месяца. Кривые смертности, а также данные о максимальной продолжительности жизни животных в разных группах в работе не представлены. Более того, их убивали в возрасте 24 месяцев (когорта 1) либо в возрасте, когда умирала половина всех животных в группе (возраст 50%-ной смертности), то есть через 6 или 8.5 месяца после начала опыта {когорта 2). Последнюю, 3-ю когорту составили мыши, которые пали ранее двухлетнего возраста или до достижения возраста 50%-ной смертности. В первой когорте было по 20 контрольных и получавших мелатонин мышей, во второй соответственно 7 и 13 мышей, а в третьей соответственно 38 и 30 животных. В этих трех когортах раздельно оценивалась частота развившихся патологических процессов. Авторы не обнаружили каких-либо различий в общей частоте патологических процессов между мышами контрольной группы и получавшими мелатонин. Однако такой вывод, на наш взгляд, не вполне корректен и опровергается данными, представленными в статье. Так, авторы объединили под одной рубрикой все патологические процессы, включая дегенеративно-атрофические, лимфопролиферативные, и новообразования. Вместе с тем если частота лимфом среди мышей контрольной группы и группы, получавшей мелатонин (3-я когорта), была одинаковой (21.1 и 23.3 % соответственно), то среди доживших до срока 50 %-ной смертности она составила 28.6 и 77.9 % соответственно. Вызывает крайнее удивление отсутствие какого-либо упоминания о лимфомах у мышей в 1-й когорте, то есть умерщвленных в возрасте 24 месяца, что лишь на 2.5-3 месяца меньше, чем в когорте 2, притом что у павших до этого срока лимфомы выявлялись в 21-23% случаев. В статье полностью отсутствуют сведения о новообразованиях других локализаций у мышей различных групп. Приходится констатировать, что работа Lipman и соавт. (1998) содержит ряд серьезных методических ошибок, которые ставят под сомнение результаты всей работы и ее выводы.
В опытах Анисимова (Anisimov et al., 2001) 50 подопытным самкам мышей линии СВА начиная с шестимесячного возраста курсами (5 дней подряд раз в месяц) вводили с питьевой водой мелатонин (20 мг/л). 50 интактных самок служили контролем. За животными наблюдали до их естественной гибели. Ежемесячно мышей взвешивали, определяли количество потребленного корма. Каждые три месяца исследовали эстральную функцию, мышечную силу, утомляемость, двигательную активность мышей, а также измеряли температуру тела. Всех животных вскрывали. Обнаруженные опухоли исследовали гистологически. Было установлено, что длительное введение мелатонина самкам мышей СВА замедляло у них возрастные изменения эстральной функции и не оказывало сколько-нибудь неблагоприятного влияния на их физическую активность. В ходе эксперимента было установлено, что у мышей контрольной группы температура тела не падала, а на 9-м месяце опыта была достоверно выше по сравнению с 6-м месяцем. У мышей, получавших мелатонин, напротив, температура тела в ходе всего эксперимента достоверно снижалась (р< 0.001). Сходная тенденция отмечена также при измерении средней температуры отдельных фаз эстрального цикла. Однако различий между значениями температуры отдельных фаз цикла практически не было. Только у мышей подопытной группы на 3-м месяце опыта температура во время эструса была достоверно выше, чем во время метаэструса и проэструса (р < 0.05).
По данным о влиянии мелатонина на продолжительность жизни мышей можно видеть, что динамика выживаемости не различалась в обеих группах до возраста 22 месяца, после чего наблюдалось отчетливое уменьшение смертности под влиянием мелатонина. Если к двухлетнему возрасту не осталось в живых ни одной контрольной мыши, то мышей, получавших мелатонин, было 9. Таким образом, кривая выживаемости мышей, получавших мелатонин, была смещена вправо по сравнению с кривой выживаемости контрольных мышей. Средняя продолжительность жизни мышей в обеих группах достоверно не различалась, тогда как максимальная продолжительность жизни под воздействием мелатонина увеличилась почти на 2.5 месяца.
Таким образом, применение мелатонина оказало определенное усиливающее спонтанный канцерогенез действие у самок мышей СВА. Число мышей со злокачественными опухолями в подопытной группе было достоверно (на 20 %) больше, чем в контрольной. Под влиянием мелатонина отмечено появление 4 лейкозов и 5 аденокарцином легких (р<0.01), отсутствовавших в контрольной группе. Показано наличие опухолей матки в подопытной группе мышей. Однако под влиянием мелатонина у мышей реже развивались аденомы легких (в 2.5 раза, р<0.001). Не наблюдалось существенного влияния мелатонина на развитие новообразований какой-либо иной локализации.
В той же статье Анисимовым была предложена схема старение-антистарение, определенная роль в которой отводится и мелатонину:


В опытах, на самках линии SHR мелатонин вводили также с питьевой водой в ночные часы в двух дозах (2 и 20 мг/л), 5 последовательных дней ежемесячно, начиная с возраста 3-го месяца (Anisimov et al., 2003). Применение мелатонина сопровождалось замедлением возрастного выключения эстральной функции, небольшим снижением веса тела (в малой дозе) и увеличением средней продолжительности жизни последних 10 % мышей. Мелатонин в дозе 2 мг/л существенно тормозил развитие опухолей у мышей этой линии (в 1.9 раза но сравнению с интактным контролем). При этом наиболее выраженный эффект проявился в отношении аденокарцином молочной железы, частота которых снизилась в 4.3 раза.
Таким образом, сведения о влиянии мелатонина на продолжительность жизни и развитие спонтанных опухолей у мышей различных линий довольно противоречивы.
Если не принимать во внимание опыты В. И. Романенко, в которых мелатонин вводили в очень большой дозе, то оказывается, что при введении мышам разных линий и вне зависимости от времени начала применения мелатонин увеличивал среднюю продолжительность жизни в 12 экспериментах из 20 и в 8 не оказал никакого эффекта. При разделении животных по полу оказалось, что мелатонин проявил геропротекторный эффект в 4 из 5 опытов, выполненных на самцах, тогда как у самок лишь в 8 опытах из 15 был получен положительный результат. В 8 из 14 опытов, в которых мелатонин начинали вводить в сравнительно молодом возрасте (до 6 месяцев), результат был позитивным и в 6 - эффект отсутствовал. Следует отметить, что большинство из описанных экспериментов было выполнено на небольшом числе животных, что, безусловно, снижает надежность полученных в таких опытах результатов. Следует отметить, что в 4 сериях опытов, в которых было достаточное количество животных (50 в каждой группе), три дали положительный результат, то есть мелатонин оказал геропротекторный эффект.

Безусловно, опыты по изучению роли мелатонина в процессе старения будут продолжены.

Инсулин- гормон, регулирующий обмен веществ. В последние годы на первое место по смертности вышли сердечно-сосудистые заболевания. И они напрямую связаны с дисбалансом инсулина. Развивается , поэтично названный учеными "квадригой смерти". Согласно современным представлениям, объединяющая основа всех проявлений метаболического синдрома первичная инсулинорезистентность и сопутствующая системная гиперинсулинемия (повышенное содержание инсулина в крови). Гиперинсулинемия, с одной стороны, является компенсаторной, то есть необходимой для преодоления инсулинорезистентности и поддержания нормального транспорта глюкозы в клетки; с другой патологической, способствующей возникновению и развитию метаболических, гемодинамических и органных нарушений, приводящих в конечном итоге к развитию сахарного диабета 2-го типа, ИБС и других проявлений атеросклероза. Это доказано большим количеством экспериментальных и клинических исследований.

До настоящего времени окончательно не изучены все возможные причины и механизмы развития инсулинорезистентности при абдоминальном ожирении, не все составляющие метаболического синдрома можно четко связать и объяснить инсулинорезистентностью. Современное представление о причинах синдрома представлено схемой:

Инсулинорезистентность это снижение реакции инсулинчувствительных тканей на инсулин при его достаточной концентрации. Изучение генетических факторов, обусловливающих развитие инсулинорезистентности, показало ее полигенный характер. В развитии нарушений чувствительности к инсулину могут иметь значение мутации генов субстрата инсулинового рецептора (СИР-1), гликогенсинтетазы, гормончувствительной липазы, b3-адренорецепторов, фактора некроза опухолей-a, разобщающего протеина (UCP-1), а также молекулярные дефекты белков, передающих сигналы инсулина (увеличение экспрессии Rad-белка и UPC-1 ингибитора тирозинкиназы инсулинового рецептора в мышечной ткани, снижение мембранной концентрации и активности внутриклеточных транспортеров глюкозы GLUT-4 в мышечной ткани).

Важную роль в развитии и прогрессировании инсулинорезистентности и связанных с ней метаболических расстройств играет жировая ткань абдоминальной области, нейрогормональные нарушения, сопутствующие абдоминальному ожирению, повышенная активность симпатической нервной системы.
Гормональные нарушения, сопутствующие висцерально-абдоминальному ожирению:
- повышение кортизола
- повышение тестостерона и андростендиона у женщин
- снижение прогестерона
- снижение тестостерона у мужчин
- снижение соматотропного гормона
- повышение инсулина
- повышение норадреналина
Гормональные нарушения в первую очередь способствуют отложению жира преимущественно в висцеральной области, а также непосредственно или опосредованно развитию инсулинорезистентности и метаболических нарушений.
Сложный каскад реакций приводит к возникновению и развитию возраст-ассоциированных заболеваний и смерти.

В статье японских ученых из Keio University School of Medicine "Метаболический синдром, IGF-1 и действие инсулина" подробно обсуждаются все эти вопросы.

Инсулиновый парадокс

Одна из групп возраст-ассоциированных заболеваний- различные нейродегенеративные заболевания имеют разное время манифестации, в их развитие вовлечены различные белки. Семейные формы заболеваний манифестируют в пятой декаде жизни, спорадические случаи-после 70 лет. Еще недавно связь между процессом старения и агрегацией токсических белков (общим признаком нейродегенеративных заболеваний) была неясной. Сигнальный путь инсулина и инсулино-подобного фактора роста 1(insulin-like growth factor 1 (IGF1)) регулирует продолжительность жизни, метаболизм и сопротивляемость стрессу и связан с нейродегенеративными заболеваниями и процессом старения. Потеря этого пути приводит к диабету, но может привести к увеличению продолжительности жизни и снижение агрегации токсических протеинов. В недавней статье Cohen E и Dillin A из The Salk Institute for Biological Studies "Инсулиновый парадокс: старение, токсичность белков и нейродегенеративные заболевания" авторы рассуждают об этом парадоксе и терапевтическом потенциале влияния на этот сигнальный путь для лечения нейродегенеративных заболеваний.

Возраст и гормон-ассоциированный рак

Как известно, с возрастом увеличивается частота онкологических заболеваний. Возраст-ассоциированными считаются гормон-ассоциированные типы опухолей- рак простаты, рак молочной железы, аденокарцинома матки, рак яичника, рак поджелудочной железы и рак щитовидной железы. Рассмотрим самое распространенное онкологическое заболевание взрослых -рак молочной железы. у женщин рак молочной железы встречается по крайней мере в 100 раз чаще, чем у мужчин, давно заставил исследователей признать, что оценка состояния репродуктивной системы - один из важных подходов к изучению патогенеза данной опухоли. Это, в частности, находит свое отражение в том, что среди факторов риска рака молочной железы, значение которых подтверждено многократными и мультицентровыми эпидемиологическими исследованиями, наряду с наличием того же заболевания у кровных родственников и предшествовавшими биопсиями по поводу доброкачественных процессов в железе представлены раннее наступление менархе, поздняя менопауза и поздние первые роды. (На этом основании выстроен ряд моделей предсказания в цифровом выражении индивидуального риска развития заболевания у "носительниц" перечисленных стигмат, - Gail et al., 1989 .) Однако необходимо подчеркнуть, что если сочетание ранней первой менструации и поздней менопаузы есть, в частности, отражение более продолжительного репродуктивного периода (и соответственно более длительной гормональной стимуляции молочной железы), то поздние первые роды, как правило, расцениваются с иных позиций - отсроченного завершения полноценного функционального созревания органа. В этом отношении подчеркивается, что дифференцировка клеточных элементов молочной железы, начинаясь с юности, достигает своего пика после первых родов и лактации с последующим регрессом в период менопаузы. Важной характеристикой этих изменений является соотношение примитивных протоков, классифицируемых как лобулы 1 и 2, и дифференцированных железистых структур (лобул 3 и 4), составляющих в совокупности, т. н. терминальные протоково-дольковые единицы. Считается, что более высокий уровень пролиферации в лобулах 1 и 2 есть результат их более высокой чувствительности к гормональной стимуляции, и, как следствие, в этих лобулах чаще, чем в лобулах 3 и 4, находят признаки атипии или карциномы in situ (Russo, Russo, 1997). В этих примерах можно видеть пересечение нескольких "векторов", в частности, каким должно быть состояние ткани- мишени, какие гормоны способны оказывать на нее пробластомогенное действие и в каком возрасте они действуют в этом отношении наиболее эффективно (т.е. способствуют перерождению клеток). Применительно к последнему вопросу значительное внимание в настоящее время уделяется перинатальному и особенно внутриутробному периоду жизни. Предполагают, что в этот момент "отбираются" своеобразные стволовые клетки, наименее резистентные к неблагоприятным гормональным воздействиям in utero и способные в дальнейшем, подвергаясь гормональной стимуляции уже во взрослой жизни, приобретать черты истинных опухолевых клеток (Adami et al., 1995). При этом маркерами пре-/перинатальной предиспозиции к развитию рака молочной железы являются рождение с крупной массой, желтуха новорожденных, отсутствие токсикозов беременности и т.д., а их истинными эквивалентами, возможно, имеющими значение в патогенезе заболевания, - избыточная внутриутробная продукция эстрогенов и ростовых факторов типа ИФР-1 (Michels et al., 1996 ; Берштейн, 1997 ; Ekbom et al., 1997). Влияние этих гормонов и гормоноподобных факторов может носить более быстрый или, наоборот, отсроченный характер, создавая условия для возникновения различных патогенетических вариантов рака молочной железы и подтверждая значение возрастного (временного) фактора при этом заболевании (Семиглазов, 1980 , Семиглазов, 1997 ; Дильман, 1987). Клиническим отражением данной ситуации является в первую очередь существование пре- и постменопаузальной формы рака молочной железы и двух более или менее четких возрастных пиков заболеваемости, разнесенных примерно десятилетием во времени. Пре- и постменопаузальный варианты болезни различаются не только целым рядом клинических особенностей, но и частотой выявления некоторых эпидемиологических факторов риска, и спектром гормонально-метаболических нарушений. Характерный пример - роль избыточной массы тела и отличия в его составе (в соотношении "жир/тощая масса") при одной и той же массе тела: большая масса и увеличение доли жира в теле повышают риск развития постменопаузального рака молочной железы и, напротив, "защищают" от возникновения его пременопаузального варианта (Берштейн, 1997). Ожирению свойственны отклонения в различных эндокринных гомеостатах, и соответственно инсулинорезистентность является одним из тех параметров, который наряду с нарушениями в продукции стероидов в настоящее время расценивается как один из ведущих факторов предиспозиции к развитию рака молочной железы (Bruning et al., 1992 ; Гамаюнова и др., 1987). Отличия в этом отношении между инсулином и ИФР-1 состоят в том, что, по проспективным наблюдениям, избыток ИФР-1 в циркуляции предрасполагает к возникновению пременопаузального варианта рака молочной железы (Hankinson et al., 1998), в то время как гиперинсулинемия и инсулинорезистентность повышают риск развития и той и другой формы заболевания (Bruning et al., 1992). Аналогично двум последним факторам действует и ускоренный рост тела в длину в пубертатный период (Berkey et al., 1999).

Переходя вновь к стероидам, необходимо отметить, что повышенный риск возникновения рака молочной железы определяется не только эстрогенами и их избыточной стимуляцией ткани-мишени. По некоторым данным, прирост в заболеваемости раком молочной железы у женщин, получавших в менопаузе комбинацию эстрогенов и прогестинов, практически такой же, как у женщин, лечившихся только эстрогенами, или даже выше, чем у последних (Schairer et al., 2000); это соответствует представлению о том, что прогестерон оказывает митогенное влияние на эпителий молочной железы (Pike, 1987 ; Henderson et al., 1997). Связь андрогенов с той же проблемой проявляется в двух основных отношениях: риску развития рака молочной железы в соответствии с некоторыми, но не всеми, имеющимися проспективными исследованиями способствует, с одной стороны, снижение продукции надпочечниковых андрогенов, в частности дегидроэпиандростерон-сульфата (что совпадает с прежними выводами о значимости т. н. дискриминанты Бальбрука, - Bulbrook et al., 1971 , а с другой - избыток преимущественно гонадных андрогенов типа тестостерона (Cauley et al., 1999). Не исключено, что отмеченная, хотя и непостоянная, разнонаправленность изменений может быть обусловлена различным влиянием инсулина на продукцию андрогенов в гонадах и коре надпочечников, что, в свою очередь, является дополнительным свидетельством сочетанного вовлечения стероидных и пептидных гормонов в анализируемый процесс. Еще одно подтверждение тому - недавно представленные результаты проспективных наблюдений, в которых прослеживается прямо пропорциональная зависимость между уровнем пролактина в плазме и последующим развитием рака молочной железы (Hankinson et al., 1999).
В недавней статье Светланы Украинцевой и соавт. из Center for Population Health and Aging 5) Гормональные аспекты возраст-ассоцированных заболеваний и мн.др.

koreada.ru - Про автомобили - Информационный портал