Смесеобразование в двигателях и горение топлива. Смесеобразование в двс. Смесеобразование в бензиновых двигателях

Смесеобразование в дизелях происходит внутри цилиндра и по времени совпадает с вводом топлива в цилиндр и частично с процессом сгорания.

Время, отводимое на процессы смесеобразования и сгорания топлива весьма ограниченно и составляет 0,05-0,005 сек. В связи с этим требования к процессу смесеобразования прежде всего сводятся к обеспечению полного сгорания топлива (бездымного).

Процесс смесеобразования в судовых дизелях особенно затруднен, так как режим работы дизеля на гребной винт с наибольшим числом оборо­тов, т. е. режим с наименьшим интервалом времени на процессе смесеобра­зования, соответствует наименьшему коэффициенту избытка воздуха в ра­бочей смеси (полной нагрузке двигателя).

Качество процесса смесеобразования в дизеле определяется тонкостью распыла топлива, подаваемого в цилиндр, и распределением там капель топлива по пространству сгорания.

Поэтому рассмотрим вначале процесс распыливания топлива. Струя топлива, вытекающая из сопла форсунки в пространство сжатия в цилиндре, находится под воздействием: внешних сил аэродинамического сопротивле­ния сжатого воздуха, сил поверхностного натяжения и сил сцепления топ­лива, а также возмущений, возникающих при истечении топлива.

Силы аэродинамического сопротивления препятствуют движению струи, и под воздействием их струя разбивается на отдельные капли. При увели­чении скорости истечения и плотности среды, куда происходит истечение, аэродинамические силы возрастают. Чем больше эти силы, тем раньше струя теряет свою форму, распадаясь на отдельные капли. Силы поверхностного натяжения и силы сцепления топлива, наоборот, своим действием стремятся сохранить форму струи, т. е. удлинить сплошную часть струи.

Начальные возмущения струи возникают вследствие: турбулентного движения топлива внутри сопла форсунки, влияния кромок соплового отверстия, шероховатости стенок его, сжимаемости топлива и пр. Начальные возмущения ускоряют распад струи.

Опыты показывают, что струя на некотором расстоянии от сопла рас­падается на отдельные капли, причем длина сплошной части струи (рис. 32) может быть различной. При этом наб­людаются следующие формы распада струи: распад струи без воздействия сил аэродинамического сопротивления воз­духа (рис. 32, а) происходит при малых скоростях истечения под действием сил поверхностного натяжения и начальных возмущений; распад струи при наличии некоторого воздействия сил аэроди­намического сопротивления воздуха (рис. 32, б); распад струи, который воз­никает при дальнейшем увеличении скорости истечения и возникновения начальных поперечных возмущений (рис. 32, в)] распад струи на отдельные капли сразу по выходе струи из соплового отверстия форсунки.

Последняя форма распада струи и должна быть для получения качест­венного процесса смесеобразования. На распад струи главным образом влия­ет скорость истечения топлива и плотность среды, куда происходит истече­ние; в меньшей степени влияет турбулентность струи топлива.

Схема распада струи показана на рис. 33. Струя по выходе из сопла рас­падается на отдельные нити, которые в свою очередь распадаются на от­дельные капли. Сечение струи условно разбито на четыре кольцевых сече­ния; скорости истечения в этих кольцевых сечениях выражены ординатами 1;2;3 и 4. Наружное кольцевое сечение, вследствие наибольшего сопротивле­ния воздуха, будет иметь наименьшую скорость, а внутреннее (ядро) имеет наибольшую скорость истечения.

Вследствие различия скоростей в сечении струи возникает движение от ядра к наружной поверхности струи. В результате распада топливной струи образуются капли различного диаметра, величина которого колеблется от нескольких микрон до 60-65 мк. По опытным данным, средний диаметр капли у тихоходных дизелей составляет 20-25 мк, а у быстроходных около 6 мк. На тонкость распыла в основном влияет скорость истечения топлива из сопла форсунки, которая приближенно определяется так:


Для получения распыла топлива, удовлетворяющего требованиям сме­сеобразования, скорость истечения должна быть в пределах 250-400 м/сек. Коэффициент истечения ф зависит от состояния поверхности сопла; для ци­линдрических гладких сопловых отверстий с закругленными входными кромками (r?0,1.-0,2 мм) равен 0,7-0,8.

Для оценки совершенства распыливания топлива применяют характеристики распыливания, которые учитывают тон­кость и однородность распыливания.

На рис. 34 приведены характеристики распыливания. По оси ординат отложено процентное количество капель данного диа­метра от всего количества капель, распо­ложенного на определенной площади, а по оси абсцисс отложены диаметры капель в мк. Чем ближе вершина кривой характе­ристики к оси ординат, тем больше тон­кость распыливания, а однородность распыливания будет тем больше, чем круче подъем и падение кривой. На рис. 34 характеристика а имеет наибо­лее тонкое и однородное распыливание, а характеристика в - наиболее грубое, но однородное и характеристика 6 - средней тонкости, но неодно­родное распыливание.

Размеры капель определяют опытным путем, как наиболее достоверным, так как теоретический путь представляет значительные трудности. Мето­дика определения числа и размера капель может быть различна. Наиболь­шее применение получила методика, основанная на улавливании на пластин­ку, покрытую какой-либо жидкостью (глицерином, жидким стеклом, сме­сью воды с дубильным экстрактом), капель распыленной струи топлива. Изготовленная микрофотография с пластины позволяет измерить диаметр капель и подсчитать их число.

Необходимая величина давления впрыскивания, с увеличением кото­рого увеличивается скорость истечения топлива, окончательно устанавли­вается в период регулировочных испытаний двигателя. Обычно у тихоход­ных дизелей она составляет около 500 кГ/см 2 , у быстроходных 600- 1000 кГ/см 2 . При применении насоса-форсунки давление впрыска достигает 2000 кГ/см 2 .

Из конструктивных элементов топливоподающей системы наибольшее влияние на тонкость распыла оказывает размер диаметра соплового от­верстия форсунки.

При уменьшении диаметра соплового отверстия тонкость и равномер­ность распыливания возрастают. В быстроходных двигателях с однокамер­ным смесеобразованием диаметр сопловых отверстий обычно 0,15-0,3 мм,2 в тихоходных доходит до 0,8 мм, находясь в зависимости от цилиндровой мощности двигателя.

Отношение длины соплового отверстия к диаметру, в пределах, при­меняемых в двигателях, почти не влияет на качество распыливания топлива. Гладкое цилиндрическое сопловое отверстие форсунки оказывает наимень­шее сопротивление истечению топлива, а потому истечение из такого сопла происходит с большей скоростью, чем из сопел другой формы. А поэтому гладкое цилиндрическое сопло обеспечивает более тонкое распыливание. Так, например, сопло с винтовыми канавками имеет коэффициент истечения порядка 0,37, тогда как гладкое цилиндри­ческое сопло имеет коэффициент истечения 0,7-0,8.

Увеличения числа оборотов вала дви­гателя, а соответственно и числа оборотов вала топливного насоса, повышает скорость плунжера топливного насоса и, следова­тельно, повышает давление нагнетания и скорость истечения топлива.

Рассмотрение процесса распада выте­кающей струи топлива позволяет сделать заключение, что вязкость топлива также влияет на тонкость распыла. Чем больше вязкость топлива, тем менее совершенным будет процесс распыливания. Опытные дан­ные показывают, что чем больше вязкость топлива, тем больше размеры капель рас­пыленного топлива.

Струя топлива по выходе из сопла форсунки, как это было изложено ранее, разбивается на отдельные нити, которые в свою очередь распадаются на отдельные капли. Вся масса капель образует так называемый факел топ­лива. Факел топлива по мере удаления от сопла расширяется, а следова­тельно, плотность его уменьшается. Плотность факела в пределах одного сечения также неодинакова.

Форма факела топлива показана на рис. 35, где изображено ядро факе­ла 1 (более плотное) и оболочка 2 (менее плотная). Кривая 3 показывает количественное распределение капель, а кривая 4 - распределение их скоростей. Ядро факела имеет наибольшую плотность и скорость. Такое рас­пределение капель можно объяснить следующим. Первые капли, поступив­шие в пространство сжатого воздуха, быстро теряют свою кинетическую энергию, но создают более благоприятные условия для движения последую­щих капель. Вследствие этого задние капли нагоняют передние и оттесняют их в стороны, сами продолжая двигаться вперед, пока не будут отстранены сзади двигающимися каплями, и. т. д. Такой процесс оттеснения одних ка­пель другими идет непрерывно до тех пор, пока не наступит равновесие меж­ду энергией струи в выходном сечении сопла и энергией, затрачиваемой на преодоление трения между частицами топлива, на проталкивание впереди идущих капель струи топлива, на преодоление трения струи о воздух, на увлечение воздуха и на создание вихревых движений воздуха в цилиндре.

Глубина проникновения факела топлива, или его дальнобойность, игра­ет весьма существенную роль в процессе смесеобразования. Под глубиной проникновения топливного факела понимают глубину проникновения вер­шины факела за определенный промежуток времени. Глубина проникнове­ния факела должна соответствовать форме и размерам пространства сгора­ния в цилиндре двигателя. При малой дальнобойности факела воздух, на­ходящийся около стенок цилиндра, не будет вовлечен в процесс сгорания, и тем самым ухудшатся условия для сгорания топлива. При большой дально­бойности частицы топлива, попадая на стенки цилиндра или поршня, обра­зуют нагар вследствие неполного сгорания. Таким образом, правильное определение дальнобойности факела имеет решающее значение в формиро­вании процесса смесеобразования.

К сожалению, решение этого вопроса теоретическим путем встречает огромные трудности, заключающиеся в учете влияния на дальнобойность эффекта облегчения движений одних капель другими и движения воздуха в направлении струи.

Все полученные формулы для определения дальнобойности факела L ф не учитывают указанных факторов и по существу справедливы для отдельных капель. Ниже приводим формулу для определения Ьф, которая получе­на из эмпирической закономерности:

Здесь? - скорость движения струи топлива;

0 - скорость движения в канале сопла форсунки;

k - коэффициент, который зависит от давления впрыскивания, от противодавления, от диаметра сопла, от рода топлива и др.;

T - время дальнобойности.

При выводе формулы (26) было принято, что k = const, и потому она не отражает действительности и, кроме того, не учитывает влияния ранее указанных факторов. Эта формула скорее справедлива для определения полета отдельной капли, а не для струи в целом.

Более достоверными являются результаты опытов по определению дальнобойности. На рис. 36 приведены результаты опытов по определению дальнобойности L ф, наибольшей ширины факела В ф и скорости перемеще­ния вершины факела? в зависимости от угла поворота валика топливного насоса? при различных противодавлениях в бомбе р б.

Диаметр сопла форсунки 0,6 мм. Давление впрыскивания р ф = 150 кГ/см 2 ; количество впрыскиваемого топлива?V = 75 мм 3 за ход. Скорость вращения вала насоса 1000 об/мин. Дальнобойность факела при р б = 26 кГ/см 2 достигает L ф = 120 см, а скорость порядка 125 м/сек и быстро падает до 25 м/сек.

Кривые? = f(?) и L ф = f(?) показывают, что с увеличением противо­давления дальнобойность и скорость истечения факела падают. Ширина факела В ф изменяется от 12 см при 5° до 25 см при 25° поворота вала насоса.

Сокращение периода подачи топлива, увеличение скорости истечения способствуют увеличению начальной скорости фронта факела и глубине его проникновения. Однако, вследствие более мелкого распыла, скорость факе­ла при этом быстрее падает. При увеличении диаметра сопла, с сохранением неизменной скорости истечения, дальнобойность факела возрастает. Проис­ходит это вследствие возрастания плотности ядра факела.

При уменьшении диаметра сопла, при неизменной суммарной площади сопел, угол конуса факела возрастает, а потому возрастает и лобовое сопро­тивление, дальнобойность же факела уменьшается. С увеличением суммар­ной площади сопловых отверстий форсунки давление распыливания умень­шается, уменьшается скорость исте­чения и уменьшается дальнобойность топливного факела.

Опыты В. Ф. Ермакова показы­вают, что предварительный подогрев топлива перед впрыском его в цилиндр существенно влияет на размеры факе­ла и тонкость распыла.

На рис. 37 представлена зависи­мость длины факела L ф от темпера­туры впрыскиваемого топлива.

Зависимость длины факела от тем­пературы топлива через 0,008 сек от начала впрыска приведена на рис. 38. При этом было установлено, что с по­вышением температуры ширина факе­ла возрастает, а длина уменьшается.

Указанное изменение формы факела с повышением температуры топлива сви­детельствует о более тонком и однородном распыле топлива. С повышением температуры топлива от 50 до 200° С длина факела уменьшилась на 22%. Средний диаметр капли уменьшился от 44,5 мк при температуре топлива 35° С до 22,6 мк при температуре топлива 200° С. Указанные результаты опытов позволяют сделать вывод, что подогрев топлива перед впрыском его в цилиндр значительно улучшает процесс смесеобразования в дизеле.

Многочисленные исследования показывают, что процессу самовоспла­менения топлива предшествует испарение его. При этом количество испа­ряющегося топлива до момента самовоспламенения зависит от размера ка­пель, от давления и температуры воздуха в цилиндре и от физико-химиче­ских свойств самого топлива. Увеличение испаряемости топлива способст­вует повышению качества процесса смесеобразования. Метод расчета про­цесса испаряемости факела топлива, разработанный проф. Д. Н. Выру­бовым, позволяет оценить влияние различных факторов на течение этого процесса, а особенно важным является количественная оценка полей кон­центрации паров топлива в смеси с воздухом.

Допуская, что среда, окружающая каплю на достаточном удалении от нее, имеет повсюду одинаковую температуру и давление, с концентрацией.

При выводе формулы (27) было принято, что капля имеет шарообраз­ную форму и неподвижна по отношению к окружающей среде. паров равной нулю (в то же время среда непосредственно у поверхности капли насыщена парами, парциальное давление которых соответствует тем­пературе капли) может быть получена формула, определяющая время пол­ного испарения капли:


Наибольшее влияние на скорость испарения топлива оказывает тем­пература воздуха в цилиндре. С повышением степени сжатия скорость испарения капли возрастает вследствие увеличения температуры воздуха. Повышение давления при этом несколько замедляет скорость испарения.

Равномерное распределение частиц топлива по пространству сгорания в основном определяется формой камеры сгорания. В судовых дизелях получили применение неразделенные камеры (смесеобразование в этом слу­чае называется однокамерным) и разделенные камеры (с предкамерным, вихрекамерным и воздушно-камерным смесеобразованием). Наибольшее применение имеет однокамерное смесеобразование.

Однокамерное смесеобразование характеризуется тем, что объем про­странства сжатия ограничен днищем крышки цилиндра, стенками цилиндра и днищем поршня. Топливо впрыскивается непосредственно в это простран­ство, и потому факел распыла по возможности должен обеспечить равно­мерность распределения частиц топлива по пространству сгорания. Дости­гается это согласованием форм камеры сгорания и факела распыла топлива, соблюдая при этом требования о дальнобойности и тонкости распыла топлив­ного факела.


На рис. 39 представлены схемы различных неразделенных камер сгора­ния. Все эти камеры сгорания имеют простую конфигурацию, не требуют усложнения конструкции цилиндровой крышки и имеют малую величину относительной поверхности охлаждения F охл / V c . Однако они обладают серь­езными недостатками, к числу которых следует отнести: неравномерное рас­пределение топлива по пространству камеры сгорания, вследствие чего для осуществления полного сгорания топлива необходимо иметь значительный коэффициент избытка воздуха (? = 1,8?2,1); требуемая тонкость распыла достигается высоким давлением нагнетания топлива, в связи с чем возрас­тают требования к топливной аппаратуре и процесс смесеобразования будет чувствителен к сорту топлива и к изменению режима работы двигателя.

Камеры сгорания могут быть разбиты на следующие группы: камеры в поршне (схемы 1-5); камеры в крышке цилиндра (схемы 6-8); между поршнем и крышкой (схемы 11-15); между двумя поршнями в двигателях с ПДП (схемы 9-10).

Из камер в поршне в среднеоборотных и многооборотных дизелях наи­большее применение имеет камера формы 2, в которой углубления в поршне воспроизводят форму факелов распыла и тем самым достигается повышение равномерности распределения частиц топлива. В целях улучшения смесеоб­разования в неразделенных камерах воздушному заряду цилиндра придают вихревое движение.


В четырехтактных дизелях вихревое движение достигается простановкой экранов на впускных клапанах или соответствующим направлением впускных каналов в крышке цилиндра (рис. 40). Наличие экранов на впуск­ном клапане уменьшает проходное сечение клапана, вследствие чего воз­растают гидравлические сопротивления, а потому целесообразнее применять для образования вихревого движения воздуха искривление впускных кана­лов. В двухтактных дизелях завихрение воздуха достигается тангенциаль­ным расположением продувочных окон. Весьма равномерное смесеобразова­ние достигается в камерах, большая часть которых расположена в поршне (см. рис. 39, схемы 4 и 5). В них при перетекании воздуха из подпоршневого пространства (в период такта сжатия) в камеру в поршне создаются радиаль­но направленные вихри, способствующие лучшему смесеобразованию. Камеры данного типа также называют «полуразделенными».

Камеры, расположенные в крышке цилиндра (см. рис. 39, схема 6-8), применяют в двухтактных двигателях. Камеры между поршнем и крышкой цилиндра (рис. 39, схемы 11-15) получаются наивыгоднейшей формы без больших углублений в поршне или в крышке цилиндра. Применяются та­кие камеры главным образом в двухтактных дизелях.

В камерах сгорания между двумя поршнями (см. рис. 39, схемы 9 и 10) ось форсунок направлена перпендикулярно оси цилиндра, с расположением сопловых отверстий в одной плоскости. При этом форсунки имеют диамет­рально противоположное расположение, чем достигается равномерное рас­пределение частиц топлива по пространству камеры сгорания.

Сгорание топлива может протекать только в присутствии окислителя, в качестве которого используется кислород, находящийся в воздухе. Следовательно, для полного сгорания определенного количества топлива необходимо иметь определенное количество воздуха, соотношение которых в смеси оценивается коэффициентом избытка воздуха.

Так как воздух является газом, а нефтяные топлива - жидкостью, то для полного окисления жидкое топливо необходимо превратить в газ, т. е. испарить. Поэтому кроме рассмотренных четырех процессов, соответствующих названиям тактов работы двигателя, всегда присутствует еще один - процесс смесеобразования.

Смесеобразование - это процесс приготовления смеси топлива с воздухом для сжигания ее в цилиндрах двигателя.

По способу смесеобразования ДВС разделяются на:

  • двигатели с внешним смесеобразованием
  • двигатели с внутренним смесеобразованием

В двигателях с внешним смесеобразованием приготовление смеси воздуха с топливом начинается за пределами цилиндра в специальном приборе - карбюраторе. Такие ДВС называются карбюраторными. В двигателях с внутренним смесеобразованием смесь приготавливается непосредственно в цилиндре. К таким ДВС относятся дизели.

Процесс смесеобразования осуществляется в результате распыливания топлива с помощью форсунки высокого давления, направленного вихревого движения заряда в камере, а иногда также регулирования температуры деталей, на которых происходит испарение топлива.

Типы смесеобразования.

В зависимости от характера впрыска топлива различают объемный, пленочный и объемно-пленочный (смешанный) типы смесеобразования, которые осуществляются в неразделенных камерах сгорания.

Объемное смесеобразование - впрыск топлива производится в воздушную среду. При этом методе попадание топлива на стенки камеры сгорания не допускается. Такое смесеобразование имеет место в 2-тактных двигателях.

Пленочное смесеобразование - основная часть топлива попадает на стенки камеры и растекается в виде тонкой жидкой пленки. В этом случае для хорошего воспламенения в сжатый воздух впрыскивается около 5% топлива, а остальная его часть - на стенки.

- часть топлива впрыскивается в воздушную среду, а часть на стенки.

Один из способов объемно-пленочного смесеобразования предложен Мойрером и разработан фирмойMAN(ФРГ). Он характеризуется следующими особенностями:

Для лучшего воспламенения и сгорания в сжатый воздух впрыскивается 5% топлива, а основная масса топлива (95%) наносится на стенки в виде пленки толщиной 10-15мк;

Впрыснутое в нагретый воздух топливо самовоспламеняется и затем поджигает горючую смесь, образующуюся в процессе испарения пленки со стенок цилиндра и перемешивания паров топлива с воздухом;

Топливо с поверхности стенок в начале сгорания испаряется сравнительно медленно и горение начинается медленно. Затем процессы ускоряются, при этом поршень идет к НМТ и поэтому двигатель работает мягко и бесшумно;

Такой процесс сгорания позволяет использовать в двигателе различные топлива: бензин, керосин, лигроин, соляровое масло и др.

Камера сгорания имеет развитые вытеснители, создающие интенсивное вихревое движение воздушного заряда, что способствует хорошему испарению и смесеобразованию.

Двигатели с подобным процессом называются многотопливными двигателями.

Смесеобразование в разделенных камерах сгорания

Для улучшения смесеобразования применяют разделенные камеры сгорания. Различают два типа смесеобразования: предкамерное и вихрекамерное.

Предкамерное смесеобразование характеризуется следующими способами:

1. Камера сгорания разделена на две части: предкамеру объемом (0,25-0,4)V с и главную камеру, которые соединены между собой узкими каналами, препятствующими быстрому перетеканию газов из предкамеры в цилиндр. В результате этого максимальные давления сгорания невелики и двигатель работает очень мягко.

2. В процессе сжатия в предкамере создается беспорядочное турбулентное движение воздуха за счет перетекания его с большой скоростью (200-300 м/с) через узкие каналы из цилиндра. В этом случае смесеобразование определяется интенсивностью движения потока воздуха в предкамере, а не качеством распыливания топлива, благодаря этому двигатель мало чувствителен к сорту топлива и имеет пониженное давление впрыска (10-13МПа).

3. Наличие узких каналов и развитой поверхности камеры сгорания приводит к большим потерям тепла через стенки предкамеры и потерь энергии при перетекании газов в предкамеру и обратно, что затрудняет пуск холодного двигателя и ухудшает его экономичность.

Для облегчения пуска повышают степень сжатия до 20-21, а в предкамере устанавливают калильные свечи, которые включаются при пуске.

Вихрекамерное смесеобразование в отличие от предкамерного характеризуется:

1. Большим объемом вихревой камеры (0,5-0,8)V с, в которой в процессе сжатия создается организованное вращательное движение воздуха.

2. Большим проходным сечением и, следовательно, большим давлением сгорания в цилиндре из-за быстрого перетекания сгоревших газов из вихревой камеры в основную.

3. Благодаря большим проходным сечениям потери энергии заряда при перетекании относительно невелики. Для надежного пуска вихрекамерные двигатели имеют = 17-20.

    СМЕСЕОБРАЗОВАНИЕ - (в двигателях внутреннего сгорания) образование горючей смеси. Внешнее смесеобразование (вне цилиндра) осуществляется карбюратором (в карбюраторных двигателях) или смесителем (в газовых двигателях), внутреннее смесеобразование форсункой… … Большой Энциклопедический словарь

    смесеобразование - я; ср. Процесс образования смесей. Ускоренное с. С. в двигателях внутреннего сгорания (перемешивание топлива с воздухом или др. окислителем для наиболее полного и быстрого сгорания топлива). * * * смесеобразование (в двигателях внутреннего… … Энциклопедический словарь

    Смесеобразование - (в двигателях внутреннего сгорания), образование горючей смеси. Внешнее смесеобразование (вне цилиндра) осуществляется карбюратором (в карбюраторных двигателях) или смесителем (в газовых двигателях), внутреннее смесеобразование форсункой… … Автомобильный словарь

    СМЕСЕОБРАЗОВАНИЕ - процесс получения рабочей (горючей) смеси в двигателях внутр. сгорания. Различают 2 осн. вида С.: внешнее и внутреннее. При внешнем С. процесс получения рабочей смеси осуществляется гл. обр. вне рабочего цилиндра двигателя. При внутреннем С.,… … Большой энциклопедический политехнический словарь

Система смесеобразования

В камерах сгорания неразделенного типа, все пространство сжатия представляет собой единый объем, ограниченный днищем поршня, крышки и стенками цилиндра. Необходимое качество смесеобразования достигается за счет согласования конфигурации камеры сгорания с формой и распределением факелов топлива, выходящих из отверстий распылителя форсунки. Вихревое движение воздуха, создаваемое в период газообмена, к концу сжатия невелико и в камерах этого типа играет второстепенное значение. Камеры неразделенного типа характеризуются простотой конструктивного исполнения и высокой экономичностью. Простота конфигурации камеры позволяет обеспечивать относительно низкие тепловые напряжения в ее стенках.

Объемное смесеобразование обеспечивает равномерное распределение всей цикловой подачи топлива в массе заряда воздуха, находящегося в камере сгорания, что достигается соответствующей формой топливного факела. Качество смесеобразования при этом в значительной мере зависит от наличия организованного вихреобразования потоков воздуха. В двухтактном двигателе вихреобразование обеспечивается наклонным или тангенциальным расположением продувочных окон.

Преимущества объемного смесеобразования: простота камеры сгорания при высоком качестве ее очистки; небольшая потеря теплоты через стенки камеры сгорания благодаря сравнительно небольшой поверхности; хорошие пусковые качества дизеля, не требующие дополнительных запальных устройств; высокая экономичность дизеля при расходе топлива 155 - 210 г/ (кВт ч). Недостатки: высокий коэффициент избытка воздуха (б = 1,6 ч2,2); высокое давление распыла (до 100 - 130 МПа); повышенные требования к топливной аппаратуре; невозможность качественного смесеобразования при небольших диаметрах цилиндров и малых значениях цикловой подачи топлива.

Объемное смесеобразование применяется практически у всех дизелей с диаметром цилиндра более 150 мм.

Система газораспределения

Поперечно-щелевая продувка. Особенность этого способа заключается в том, что выпускные и продувочные окна расположены с разных сторон втулки цилиндра. Они соединены соответственно с выпускным коллектором и с ресивером продувочного воздуха. Продувочным окнам придан наклон вверх, в связи с чем воздух движется сначала к крышке цилиндра, затем вытесняя отработавшие газы, меняет направление на обратное.

Чтобы к моменту открытия продувочных окон давление в цилиндре успело снизиться и стать ниже давления продувочного воздуха, выпускные окна предусмотрены выше продувочных. Однако в этом случае поршень, двигаясь вверх, закроет сначала продувочные окна, выпускные будут еще частично открыты. Процесс продувки после закрытия продувочных окон заканчивается, следовательно, через не полностью закрытые выпускные окна будет выходить (частичная утечка) свежий заряд воздуха. Чтобы избежать это явление, у крупных двигателей выпускные и продувочные окна выполняют одинаковой высоты, но в ресивере продувочного воздуха ставят невозвратные клапаны, которые предотвращают заброс отработавших газов из цилиндра в ресивер при открытии окон; продувка начинается лишь при падении давления в цилиндре после открытия выпускных окон. При движении же поршня вверх продувочный воздух будет поступать до момента закрытия и тех и других окон. С той же целью в некоторых крупных двигателях на выпускном патрубке ставят приводной золотник, привод которого регулируют так, чтобы в момент перекрытия поршнем продувочных окон золотник перекрыл выпускные.

Способ поперечно - щелевой продувки широко распространен вследствие его простоты.

Распределительный вал стальной. На нем имеются для каждого цилиндра по две пары кулачковых шайб симметричного профиля (переднего и заднего хода) для привода топливных насосов и воздухораспределителей. Кулачковые шайбы топливных насосов, а также их ролики - толкатели имеют на торцах скосы, и при реверсировании достаточно передвинуть распределительный вал в осевом направлении, чтобы соответствующие кулачковые шайбы стали под приводные ролики. На кормовом торце двигателя у распределительного вала размещены реверсивные баллоны. Распределительный вал состоит из ряда секций. Каждая отдельная секция состоит из участка вала с кулачными шайбами выхлопных клапанов и топливных насосов и соединительных частей.

Привод распределительного вала цепной; он расположен у первого цилиндра. Цепное колесо, закрепленное на коленчатом валу, через одинарную роликовую цепь приводит в движение цепное колесо, которое сидит на муфте распределительного вала. Цепь проходит через две направляющие и две натяжные звездочки, закрепленные в поворотном кронштейне. Натяжение цепи осуществляется разворотом кронштейна с помощью регулировочного болта с шаровой гайкой.

koreada.ru - Про автомобили - Информационный портал